aboutsummaryrefslogtreecommitdiff
path: root/nizk/stage1.go
blob: 9e8784610262065552cc01d3240a05634060a41e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
package nizk

import . "kesim.org/seal/common"

type Stage struct {
	x *Scalar
	r *Scalar

	com *StageCommitment
	rev *StageReveal

	prf1 *Stage1Proof
	prf2 *Stage2Proof

	bit *Bit
}

type StageCommitment struct {
	R *Point
	X *Point
}

type StageReveal struct {
	Z *Point
	Y *Point
}

// Represents the proof of statements of the following form:
//
//	    [ Z=g^(xy) && X=g^x && Y=g^y && C=g^(αβ)   && A=g^α && B=g^β ]
//		|| [ Z=g^(xr) && X=g^x && R=g^r && C=g^(αβ+1) && A=g^α && B=g^β ]
//
// for given Z, X, Y, R, C, A and B
type Stage1Proof struct {
	Ch  [2]*Scalar
	Rho [2][2]*Scalar
}

func (b *Bit) stage(x, r *Scalar) *Stage {
	b.Commit() // ensure non-null values for A, B, C
	return &Stage{
		x:   x,
		r:   r,
		bit: b,
	}
}

func (b *Bit) CommitStage1(Xs ...*Point) (c *Stage, s *StageCommitment) {
	x := Curve.RandomScalar()
	r := Curve.RandomScalar()
	return b.CommitStage1FromScalars(x, r, Xs...)
}

func (b *Bit) CommitStage1FromScalars(x, r *Scalar, Xs ...*Point) (s *Stage, c *StageCommitment) {
	s = b.stage(x, r)
	return s, s.commit(false, Xs...)
}

func (s *Stage) commit(lost bool, Xs ...*Point) *StageCommitment {
	if s.com != nil {
		return s.com
	}

	s.com = &StageCommitment{
		X: G.Exp(s.x),
		R: G.Exp(s.r),
	}
	return s.com
}

func (s *Stage) RevealStage1(Xs ...*Point) (rev *StageReveal, pr *Stage1Proof, e error) {
	var ε [2][4]*Point
	var r1, r2, ρ1, ρ2, ω *Scalar
	for _, s := range []**Scalar{&r1, &r2, &ρ1, &ρ2, &ω} {
		*s = Curve.RandomScalar()
	}
	c := s.commit(false)
	bc := s.bit.com

	// TODO: Calculate Y based on the Xs and our own X_i
	// as Π_(i<k) X_k / Π_(i>k) X_k
	// For now:
	Y := G.Exp(Curve.RandomScalar())

	rev = &StageReveal{Y: Y}
	if s.bit.IsSet() {
		rev.Z = c.R.Exp(s.x)
	} else {
		rev.Z = rev.Y.Exp(s.x)
	}

	if s.bit.IsSet() {
		ε[0][0] = G.Exp(r1).Mul(c.X.Exp(ω))
		ε[0][1] = G.Exp(r2).Mul(bc.A.Exp(ω))
		ε[0][2] = rev.Y.Exp(r1).Mul(rev.Z.Exp(ω))
		ε[0][3] = bc.B.Exp(r2).Mul(bc.C.Exp(ω))
		ε[1][0] = G.Exp(ρ1)
		ε[1][1] = G.Exp(ρ2)
		ε[1][2] = c.R.Exp(ρ1)
		ε[1][3] = bc.B.Exp(ρ2)
	} else {
		ε[0][0] = G.Exp(r1)
		ε[0][1] = G.Exp(r2)
		ε[0][2] = rev.Y.Exp(r1)
		ε[0][3] = bc.B.Exp(r2)
		ε[1][0] = G.Exp(ρ1).Mul(c.X.Exp(ω))
		ε[1][1] = G.Exp(ρ2).Mul(bc.A.Exp(ω))
		ε[1][2] = c.R.Exp(ρ1).Mul(rev.Z.Exp(ω))
		ε[1][3] = bc.B.Exp(ρ2).Mul(bc.C.Div(G).Exp(ω))
	}

	p := []Bytes{G, bc.A, bc.B, bc.C, c.R, c.X, rev.Y, rev.Z}
	for _, e := range ε[0] {
		p = append(p, e)
	}
	for _, e := range ε[1] {
		p = append(p, e)
	}

	ch := Challenge(p...)
	pr = &Stage1Proof{}
	α, _ := s.bit.Scalars()

	if s.bit.IsSet() {
		pr.Ch[0] = ω
		pr.Ch[1] = ch.Sub(ω)
		pr.Rho[0][0] = r1
		pr.Rho[0][1] = r2
		pr.Rho[1][0] = ρ1.Sub(s.x.Mul(pr.Ch[1]))
		pr.Rho[1][1] = ρ2.Sub(α.Mul(pr.Ch[1]))
	} else {
		pr.Ch[0] = ch.Sub(ω)
		pr.Ch[1] = ω
		pr.Rho[0][0] = r1.Sub(s.x.Mul(pr.Ch[0]))
		pr.Rho[0][1] = r2.Sub(α.Mul(pr.Ch[0]))
		pr.Rho[1][0] = ρ1
		pr.Rho[1][1] = ρ2
	}

	s.rev = rev
	s.prf1 = pr
	return rev, pr, e
}

func (c *Commitment) VerifyStage1(sc *StageCommitment, r *StageReveal, p *Stage1Proof) bool {
	var ε [2][4]*Point

	ε[0][0] = G.Exp(p.Rho[0][0]).Mul(sc.X.Exp(p.Ch[0]))
	ε[0][1] = G.Exp(p.Rho[0][1]).Mul(c.A.Exp(p.Ch[0]))
	ε[0][2] = r.Y.Exp(p.Rho[0][0]).Mul(r.Z.Exp(p.Ch[0]))
	ε[0][3] = c.B.Exp(p.Rho[0][1]).Mul(c.C.Exp(p.Ch[0]))
	ε[1][0] = G.Exp(p.Rho[1][0]).Mul(sc.X.Exp(p.Ch[1]))
	ε[1][1] = G.Exp(p.Rho[1][1]).Mul(c.A.Exp(p.Ch[1]))
	ε[1][2] = sc.R.Exp(p.Rho[1][0]).Mul(r.Z.Exp(p.Ch[1]))
	ε[1][3] = c.B.Exp(p.Rho[1][1]).Mul(c.C.Div(G).Exp(p.Ch[1]))

	points := []Bytes{G, c.A, c.B, c.C, sc.R, sc.X, r.Y, r.Z}
	for _, e := range ε[0] {
		points = append(points, e)
	}
	for _, e := range ε[1] {
		points = append(points, e)
	}

	ch := Challenge(points...)

	return p.Ch[0].Add(p.Ch[1]).Equal(ch)
}