package nizk import . "kesim.org/seal/common" type Stage struct { x *Scalar r *Scalar com *StageCommitment rev *StageReveal prf1 *Stage1Proof prf2 *Stage2Proof bit *Bit } type StageCommitment struct { R *Point X *Point } type StageReveal struct { Z *Point Y *Point } // Represents the proof of statements of the following form: // // [ Z=g^(xy) && X=g^x && Y=g^y && C=g^(αβ) && A=g^α && B=g^β ] // || [ Z=g^(xr) && X=g^x && R=g^r && C=g^(αβ+1) && A=g^α && B=g^β ] // // for given Z, X, Y, R, C, A and B type Stage1Proof struct { Ch [2]*Scalar Rho [2][2]*Scalar } func (b *Bit) stage(x, r *Scalar) *Stage { b.Commit() // ensure non-null values for A, B, C return &Stage{ x: x, r: r, bit: b, } } func (b *Bit) CommitStage1(Xs ...*Point) (c *Stage, s *StageCommitment) { x := Curve.RandomScalar() r := Curve.RandomScalar() return b.CommitStage1FromScalars(x, r, Xs...) } func (b *Bit) CommitStage1FromScalars(x, r *Scalar, Xs ...*Point) (s *Stage, c *StageCommitment) { s = b.stage(x, r) return s, s.commit(false, Xs...) } func (s *Stage) commit(lost bool, Xs ...*Point) *StageCommitment { if s.com != nil { return s.com } s.com = &StageCommitment{ X: G.Exp(s.x), R: G.Exp(s.r), } return s.com } func (s *Stage) RevealStage1(Xs ...*Point) (rev *StageReveal, pr *Stage1Proof, e error) { var ε [2][4]*Point var r1, r2, ρ1, ρ2, ω *Scalar for _, s := range []**Scalar{&r1, &r2, &ρ1, &ρ2, &ω} { *s = Curve.RandomScalar() } c := s.commit(false) bc := s.bit.com // TODO: Calculate Y based on the Xs and our own X_i // as Π_(ik) X_k // For now: Y := G.Exp(Curve.RandomScalar()) rev = &StageReveal{Y: Y} if s.bit.IsSet() { rev.Z = c.R.Exp(s.x) } else { rev.Z = rev.Y.Exp(s.x) } if s.bit.IsSet() { ε[0][0] = G.Exp(r1).Mul(c.X.Exp(ω)) ε[0][1] = G.Exp(r2).Mul(bc.A.Exp(ω)) ε[0][2] = rev.Y.Exp(r1).Mul(rev.Z.Exp(ω)) ε[0][3] = bc.B.Exp(r2).Mul(bc.C.Exp(ω)) ε[1][0] = G.Exp(ρ1) ε[1][1] = G.Exp(ρ2) ε[1][2] = c.R.Exp(ρ1) ε[1][3] = bc.B.Exp(ρ2) } else { ε[0][0] = G.Exp(r1) ε[0][1] = G.Exp(r2) ε[0][2] = rev.Y.Exp(r1) ε[0][3] = bc.B.Exp(r2) ε[1][0] = G.Exp(ρ1).Mul(c.X.Exp(ω)) ε[1][1] = G.Exp(ρ2).Mul(bc.A.Exp(ω)) ε[1][2] = c.R.Exp(ρ1).Mul(rev.Z.Exp(ω)) ε[1][3] = bc.B.Exp(ρ2).Mul(bc.C.Div(G).Exp(ω)) } p := []Bytes{G, bc.A, bc.B, bc.C, c.R, c.X, rev.Y, rev.Z} for _, e := range ε[0] { p = append(p, e) } for _, e := range ε[1] { p = append(p, e) } ch := Challenge(p...) pr = &Stage1Proof{} α, _ := s.bit.Scalars() if s.bit.IsSet() { pr.Ch[0] = ω pr.Ch[1] = ch.Sub(ω) pr.Rho[0][0] = r1 pr.Rho[0][1] = r2 pr.Rho[1][0] = ρ1.Sub(s.x.Mul(pr.Ch[1])) pr.Rho[1][1] = ρ2.Sub(α.Mul(pr.Ch[1])) } else { pr.Ch[0] = ch.Sub(ω) pr.Ch[1] = ω pr.Rho[0][0] = r1.Sub(s.x.Mul(pr.Ch[0])) pr.Rho[0][1] = r2.Sub(α.Mul(pr.Ch[0])) pr.Rho[1][0] = ρ1 pr.Rho[1][1] = ρ2 } s.rev = rev s.prf1 = pr return rev, pr, e } func (c *Commitment) VerifyStage1(sc *StageCommitment, r *StageReveal, p *Stage1Proof) bool { var ε [2][4]*Point ε[0][0] = G.Exp(p.Rho[0][0]).Mul(sc.X.Exp(p.Ch[0])) ε[0][1] = G.Exp(p.Rho[0][1]).Mul(c.A.Exp(p.Ch[0])) ε[0][2] = r.Y.Exp(p.Rho[0][0]).Mul(r.Z.Exp(p.Ch[0])) ε[0][3] = c.B.Exp(p.Rho[0][1]).Mul(c.C.Exp(p.Ch[0])) ε[1][0] = G.Exp(p.Rho[1][0]).Mul(sc.X.Exp(p.Ch[1])) ε[1][1] = G.Exp(p.Rho[1][1]).Mul(c.A.Exp(p.Ch[1])) ε[1][2] = sc.R.Exp(p.Rho[1][0]).Mul(r.Z.Exp(p.Ch[1])) ε[1][3] = c.B.Exp(p.Rho[1][1]).Mul(c.C.Div(G).Exp(p.Ch[1])) points := []Bytes{G, c.A, c.B, c.C, sc.R, sc.X, r.Y, r.Z} for _, e := range ε[0] { points = append(points, e) } for _, e := range ε[1] { points = append(points, e) } ch := Challenge(points...) return p.Ch[0].Add(p.Ch[1]).Equal(ch) }