add note on how to assure gamma is random

This commit is contained in:
Christian Grothoff 2015-09-27 14:04:52 +02:00
parent 5eb5aa820a
commit b3a65cb766

View File

@ -745,7 +745,8 @@ and $G$ is the generator of the elliptic curve.
\item The customer computes $B_i := E_{b_i}(C^{(i)}_p)$ for $i=1,\ldots,\kappa$ and sends a commitment
$S_{C'}(\vec{E}, \vec{B}, \vec{T_p}))$ to the mint;
here $E_{b_i}$ denotes Chaum-style blinding with blinding factor $b_i$.
\item The mint generates a random $\gamma$ with $1 \le \gamma \le \kappa$ and
\item The mint generates a random\footnote{Auditing processes need to assure $\gamma$ is unpredictable until this time to
prevent the mint from assisting tax evasion.} $\gamma$ with $1 \le \gamma \le \kappa$ and
marks $C'_p$ as spent by committing
$\langle C', \gamma, S_{C'}(\vec{E}, \vec{B}, \vec{T}) \rangle$ to disk.
\item The mint sends $S_K(C'_p, \gamma)$ to the customer.\footnote{Instead of $K$, it is also