From b3a65cb766d494d32a9ae33bb78b809bf74da9bd Mon Sep 17 00:00:00 2001 From: Christian Grothoff Date: Sun, 27 Sep 2015 14:04:52 +0200 Subject: [PATCH] add note on how to assure gamma is random --- doc/paper/taler.tex | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/doc/paper/taler.tex b/doc/paper/taler.tex index 06f6ba2f6..d0e607bff 100644 --- a/doc/paper/taler.tex +++ b/doc/paper/taler.tex @@ -745,7 +745,8 @@ and $G$ is the generator of the elliptic curve. \item The customer computes $B_i := E_{b_i}(C^{(i)}_p)$ for $i=1,\ldots,\kappa$ and sends a commitment $S_{C'}(\vec{E}, \vec{B}, \vec{T_p}))$ to the mint; here $E_{b_i}$ denotes Chaum-style blinding with blinding factor $b_i$. - \item The mint generates a random $\gamma$ with $1 \le \gamma \le \kappa$ and + \item The mint generates a random\footnote{Auditing processes need to assure $\gamma$ is unpredictable until this time to + prevent the mint from assisting tax evasion.} $\gamma$ with $1 \le \gamma \le \kappa$ and marks $C'_p$ as spent by committing $\langle C', \gamma, S_{C'}(\vec{E}, \vec{B}, \vec{T}) \rangle$ to disk. \item The mint sends $S_K(C'_p, \gamma)$ to the customer.\footnote{Instead of $K$, it is also