%s/K_i/L_i/g

This commit is contained in:
Jeff Burdges 2016-08-09 00:37:14 +02:00
parent 0155774136
commit 1a2ecef44b

View File

@ -777,16 +777,16 @@ generator of the elliptic curve.
a transfer private key $t^{(i)}_s$ and computes
\begin{itemize}
\item the transfer public key $T^{(i)}_p := t^{(i)}_s G$ and
\item the new coin secret seed $K_i := H(c'_s T_p^{(i)})$.
\item the new coin secret seed $L_i := H(c'_s T_p^{(i)})$.
\end{itemize}
We have computed $K_i$ as a Diffie-Hellman shared secret between
We have computed $L_i$ as a Diffie-Hellman shared secret between
the transfer key pair $T^{(i)} := \left(t^{(i)}_s,T^{(i)}_p\right)$
and old coin key pair $C' := \left(c_s', C_p'\right)$,
so that $K_i = H(t^{(i)}_s C'_p)$ too.
Now the customer applies key derivtion functions $\KDF_?$ to $K_i$ to generate
so that $L_i = H(t^{(i)}_s C'_p)$ too.
Now the customer applies key derivtion functions $\KDF_?$ to $L_i$ to generate
\begin{itemize}
\item a blinding factor $b^{(i)} = \FDH_K(\KDF_{\textrm{blinding}}(K_i))$.
\item $c_s^{(i)} = \KDF_{\textrm{Ed25519}}(K_i)$
\item a blinding factor $b^{(i)} = \FDH_K(\KDF_{\textrm{blinding}}(L_i))$.
\item $c_s^{(i)} = \KDF_{\textrm{Ed25519}}(L_i)$
\end{itemize}
Now the customer can compute her new coin key pair
$C^{(i)} := \left(c_s^{(i)}, C_p^{(i)}\right)$
@ -1252,13 +1252,13 @@ data being committed to disk are represented in between $\langle\rangle$.
\item[$\vec{b}$]{Vector of $b^{(i)}$}
\item[$B^{(i)}$]{Blinding of $C_p^{(i)}$}
\item[$\vec{B}$]{Vector of $B^{(i)}$}
\item[$K_i$]{Symmetric encryption key derived from ECDH operation via hashing}
% \item[$E_{K_i}()$]{Symmetric encryption using key $K_i$}
\item[$L_i$]{Link secret derived from ECDH operation via hashing}
% \item[$E_{L_i}()$]{Symmetric encryption using key $L_i$}
% \item[$E^{(i)}$]{$i$-th encryption of the private information $(c_s^{(i)}, b_i)$}
% \item[$\vec{E}$]{Vector of $E^{(i)}$}
\item[$\cal{R}$]{Tuple of revealed vectors in cut-and-choose protocol,
where the vectors exclude the selected index $\gamma$}
\item[$\overline{K_i}$]{Link secrets derived by the verifier from DH}
\item[$\overline{L_i}$]{Link secrets derived by the verifier from DH}
\item[$\overline{B^{(i)}}$]{Blinded values derived by the verifier}
\item[$\overline{T_p^{(i)}}$]{Public transfer keys derived by the verifier from revealed private keys}
\item[$\overline{c_s^{(i)}}$]{Private keys obtained from decryption by the verifier}