diff --git a/doc/paper/taler.tex b/doc/paper/taler.tex index 19dff3192..3d5453b0e 100644 --- a/doc/paper/taler.tex +++ b/doc/paper/taler.tex @@ -777,16 +777,16 @@ generator of the elliptic curve. a transfer private key $t^{(i)}_s$ and computes \begin{itemize} \item the transfer public key $T^{(i)}_p := t^{(i)}_s G$ and - \item the new coin secret seed $K_i := H(c'_s T_p^{(i)})$. + \item the new coin secret seed $L_i := H(c'_s T_p^{(i)})$. \end{itemize} - We have computed $K_i$ as a Diffie-Hellman shared secret between + We have computed $L_i$ as a Diffie-Hellman shared secret between the transfer key pair $T^{(i)} := \left(t^{(i)}_s,T^{(i)}_p\right)$ and old coin key pair $C' := \left(c_s', C_p'\right)$, - so that $K_i = H(t^{(i)}_s C'_p)$ too. - Now the customer applies key derivtion functions $\KDF_?$ to $K_i$ to generate + so that $L_i = H(t^{(i)}_s C'_p)$ too. + Now the customer applies key derivtion functions $\KDF_?$ to $L_i$ to generate \begin{itemize} - \item a blinding factor $b^{(i)} = \FDH_K(\KDF_{\textrm{blinding}}(K_i))$. - \item $c_s^{(i)} = \KDF_{\textrm{Ed25519}}(K_i)$ + \item a blinding factor $b^{(i)} = \FDH_K(\KDF_{\textrm{blinding}}(L_i))$. + \item $c_s^{(i)} = \KDF_{\textrm{Ed25519}}(L_i)$ \end{itemize} Now the customer can compute her new coin key pair $C^{(i)} := \left(c_s^{(i)}, C_p^{(i)}\right)$ @@ -1252,13 +1252,13 @@ data being committed to disk are represented in between $\langle\rangle$. \item[$\vec{b}$]{Vector of $b^{(i)}$} \item[$B^{(i)}$]{Blinding of $C_p^{(i)}$} \item[$\vec{B}$]{Vector of $B^{(i)}$} - \item[$K_i$]{Symmetric encryption key derived from ECDH operation via hashing} -% \item[$E_{K_i}()$]{Symmetric encryption using key $K_i$} + \item[$L_i$]{Link secret derived from ECDH operation via hashing} +% \item[$E_{L_i}()$]{Symmetric encryption using key $L_i$} % \item[$E^{(i)}$]{$i$-th encryption of the private information $(c_s^{(i)}, b_i)$} % \item[$\vec{E}$]{Vector of $E^{(i)}$} \item[$\cal{R}$]{Tuple of revealed vectors in cut-and-choose protocol, where the vectors exclude the selected index $\gamma$} - \item[$\overline{K_i}$]{Link secrets derived by the verifier from DH} + \item[$\overline{L_i}$]{Link secrets derived by the verifier from DH} \item[$\overline{B^{(i)}}$]{Blinded values derived by the verifier} \item[$\overline{T_p^{(i)}}$]{Public transfer keys derived by the verifier from revealed private keys} \item[$\overline{c_s^{(i)}}$]{Private keys obtained from decryption by the verifier}