exchange/src/util/crypto.c

856 lines
24 KiB
C
Raw Normal View History

/*
This file is part of TALER
2017-11-27 23:42:17 +01:00
Copyright (C) 2014-2017 Taler Systems SA
TALER is free software; you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software
Foundation; either version 3, or (at your option) any later version.
TALER is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with
2016-07-07 17:55:25 +02:00
TALER; see the file COPYING. If not, see <http://www.gnu.org/licenses/>
*/
/**
* @file util/crypto.c
* @brief Cryptographic utility functions
* @author Sree Harsha Totakura <sreeharsha@totakura.in>
* @author Florian Dold
* @author Benedikt Mueller
* @author Christian Grothoff
*/
#include "platform.h"
2015-07-15 11:40:51 +02:00
#include "taler_util.h"
#include <gcrypt.h>
/**
* Should we use the RSA blind signing implementation
* from libgnunetutil? The blinding only works
* correctly with a current version of libgnunetutil.
*
* Only applies to blinding and unblinding, but
* not to blind signing.
*
* FIXME: Can we define some macro for this in configure.ac
* to detect the version?
*/
2020-12-04 12:25:58 +01:00
#define USE_GNUNET_RSA_BLINDING 0
2015-01-27 22:01:08 +01:00
/**
* Function called by libgcrypt on serious errors.
* Prints an error message and aborts the process.
*
* @param cls NULL
* @param wtf unknown
* @param msg error message
*/
static void
2015-01-27 22:01:08 +01:00
fatal_error_handler (void *cls,
int wtf,
const char *msg)
{
2019-09-05 11:11:00 +02:00
(void) cls;
(void) wtf;
2015-05-18 18:52:52 +02:00
fprintf (stderr,
"Fatal error in libgcrypt: %s\n",
msg);
2019-08-25 16:18:24 +02:00
abort ();
}
/**
2015-01-27 22:01:08 +01:00
* Initialize libgcrypt.
*/
2019-08-25 16:18:24 +02:00
void __attribute__ ((constructor))
2015-01-27 22:01:08 +01:00
TALER_gcrypt_init ()
{
2015-03-22 22:14:30 +01:00
gcry_set_fatalerror_handler (&fatal_error_handler,
NULL);
2015-05-18 18:52:52 +02:00
if (! gcry_check_version (NEED_LIBGCRYPT_VERSION))
{
fprintf (stderr,
"libgcrypt version mismatch\n");
abort ();
}
/* Disable secure memory (we should never run on a system that
even uses swap space for memory). */
gcry_control (GCRYCTL_DISABLE_SECMEM, 0);
gcry_control (GCRYCTL_INITIALIZATION_FINISHED, 0);
}
/**
* Check if a coin is valid; that is, whether the denomination key exists,
* is not expired, and the signature is correct.
2015-01-27 18:49:02 +01:00
*
* @param coin_public_info the coin public info to check for validity
* @param denom_pub denomination key, must match @a coin_public_info's `denom_pub_hash`
* @return #GNUNET_YES if the coin is valid,
* #GNUNET_NO if it is invalid
2020-03-31 20:57:11 +02:00
* #GNUNET_SYSERR if an internal error occurred
2015-01-27 18:49:02 +01:00
*/
int
TALER_test_coin_valid (const struct TALER_CoinPublicInfo *coin_public_info,
const struct TALER_DenominationPublicKey *denom_pub)
2015-01-27 18:49:02 +01:00
{
struct GNUNET_HashCode c_hash;
#if ENABLE_SANITY_CHECKS
struct GNUNET_HashCode d_hash;
2015-01-27 18:49:02 +01:00
GNUNET_CRYPTO_rsa_public_key_hash (denom_pub->rsa_public_key,
&d_hash);
GNUNET_assert (0 ==
GNUNET_memcmp (&d_hash,
&coin_public_info->denom_pub_hash));
#endif
GNUNET_CRYPTO_hash (&coin_public_info->coin_pub,
sizeof (struct GNUNET_CRYPTO_EcdsaPublicKey),
&c_hash);
if (GNUNET_OK !=
GNUNET_CRYPTO_rsa_verify (&c_hash,
coin_public_info->denom_sig.rsa_signature,
denom_pub->rsa_public_key))
{
GNUNET_log (GNUNET_ERROR_TYPE_WARNING,
"coin signature is invalid\n");
return GNUNET_NO;
}
return GNUNET_YES;
2015-01-27 18:49:02 +01:00
}
/**
* Given the coin and the transfer private keys, compute the
* transfer secret. (Technically, we only need one of the two
* private keys, but the caller currently trivially only has
* the two private keys, so we derive one of the public keys
* internally to this function.)
*
* @param coin_priv coin key
* @param trans_priv transfer private key
2015-08-09 15:40:16 +02:00
* @param[out] ts computed transfer secret
*/
void
TALER_link_derive_transfer_secret (
const struct TALER_CoinSpendPrivateKeyP *coin_priv,
const struct TALER_TransferPrivateKeyP *trans_priv,
struct TALER_TransferSecretP *ts)
{
struct TALER_CoinSpendPublicKeyP coin_pub;
GNUNET_CRYPTO_eddsa_key_get_public (&coin_priv->eddsa_priv,
&coin_pub.eddsa_pub);
GNUNET_assert (GNUNET_OK ==
GNUNET_CRYPTO_ecdh_eddsa (&trans_priv->ecdhe_priv,
&coin_pub.eddsa_pub,
&ts->key));
}
/**
* Decrypt the shared @a secret from the information in the
* @a trans_priv and @a coin_pub.
2015-05-01 09:59:18 +02:00
*
2015-05-16 18:26:34 +02:00
* @param trans_priv transfer private key
* @param coin_pub coin public key
2017-04-20 07:49:56 +02:00
* @param[out] transfer_secret set to the shared secret
*/
void
TALER_link_reveal_transfer_secret (
const struct TALER_TransferPrivateKeyP *trans_priv,
const struct TALER_CoinSpendPublicKeyP *coin_pub,
struct TALER_TransferSecretP *transfer_secret)
{
GNUNET_assert (GNUNET_OK ==
GNUNET_CRYPTO_ecdh_eddsa (&trans_priv->ecdhe_priv,
&coin_pub->eddsa_pub,
&transfer_secret->key));
}
2015-04-15 18:34:14 +02:00
/**
* Decrypt the shared @a secret from the information in the
* @a trans_priv and @a coin_pub.
2015-05-01 09:59:18 +02:00
*
* @param trans_pub transfer private key
* @param coin_priv coin public key
2017-04-20 07:49:56 +02:00
* @param[out] transfer_secret set to the shared secret
2015-04-15 18:34:14 +02:00
*/
void
TALER_link_recover_transfer_secret (
const struct TALER_TransferPublicKeyP *trans_pub,
const struct TALER_CoinSpendPrivateKeyP *coin_priv,
struct TALER_TransferSecretP *transfer_secret)
2015-04-15 18:34:14 +02:00
{
GNUNET_assert (GNUNET_OK ==
GNUNET_CRYPTO_eddsa_ecdh (&coin_priv->eddsa_priv,
&trans_pub->ecdhe_pub,
&transfer_secret->key));
2015-04-15 18:34:14 +02:00
}
/**
* Setup information for a fresh coin.
2015-05-01 09:59:18 +02:00
*
* @param secret_seed seed to use for KDF to derive coin keys
* @param coin_num_salt number of the coin to include in KDF
* @param[out] ps value to initialize
*/
void
TALER_planchet_setup_refresh (const struct TALER_TransferSecretP *secret_seed,
2017-11-27 23:42:17 +01:00
uint32_t coin_num_salt,
struct TALER_PlanchetSecretsP *ps)
{
uint32_t be_salt = htonl (coin_num_salt);
GNUNET_assert (GNUNET_OK ==
GNUNET_CRYPTO_kdf (ps,
sizeof (*ps),
&be_salt,
sizeof (be_salt),
secret_seed,
sizeof (*secret_seed),
"taler-coin-derivation",
strlen ("taler-coin-derivation"),
NULL, 0));
}
/**
* Setup information for a fresh coin.
*
* @param[out] ps value to initialize
*/
void
TALER_planchet_setup_random (struct TALER_PlanchetSecretsP *ps)
{
GNUNET_CRYPTO_random_block (GNUNET_CRYPTO_QUALITY_STRONG,
ps,
sizeof (*ps));
}
/**
* Prepare a planchet for tipping. Creates and blinds a coin.
*
* @param dk denomination key for the coin to be created
* @param ps secret planchet internals (for #TALER_planchet_to_coin)
* @param[out] c_hash set to the hash of the public key of the coin (needed later)
* @param[out] pd set to the planchet detail for TALER_MERCHANT_tip_pickup() and
* other withdraw operations
* @return #GNUNET_OK on success
*/
int
TALER_planchet_prepare (const struct TALER_DenominationPublicKey *dk,
const struct TALER_PlanchetSecretsP *ps,
struct GNUNET_HashCode *c_hash,
struct TALER_PlanchetDetail *pd)
{
struct TALER_CoinSpendPublicKeyP coin_pub;
GNUNET_CRYPTO_eddsa_key_get_public (&ps->coin_priv.eddsa_priv,
&coin_pub.eddsa_pub);
GNUNET_CRYPTO_hash (&coin_pub.eddsa_pub,
sizeof (struct GNUNET_CRYPTO_EcdsaPublicKey),
c_hash);
if (GNUNET_YES !=
TALER_rsa_blind (c_hash,
&ps->blinding_key.bks,
dk->rsa_public_key,
&pd->coin_ev,
&pd->coin_ev_size))
{
GNUNET_break_op (0);
return GNUNET_SYSERR;
}
GNUNET_CRYPTO_rsa_public_key_hash (dk->rsa_public_key,
&pd->denom_pub_hash);
return GNUNET_OK;
}
/**
* Obtain a coin from the planchet's secrets and the blind signature
* of the exchange.
*
* @param dk denomination key, must match what was given to #TALER_planchet_prepare()
* @param blind_sig blind signature from the exchange
* @param ps secrets from #TALER_planchet_prepare()
* @param c_hash hash of the coin's public key for verification of the signature
* @param[out] coin set to the details of the fresh coin
* @return #GNUNET_OK on success
*/
int
TALER_planchet_to_coin (const struct TALER_DenominationPublicKey *dk,
const struct GNUNET_CRYPTO_RsaSignature *blind_sig,
const struct TALER_PlanchetSecretsP *ps,
const struct GNUNET_HashCode *c_hash,
struct TALER_FreshCoin *coin)
{
struct GNUNET_CRYPTO_RsaSignature *sig;
sig = TALER_rsa_unblind (blind_sig,
&ps->blinding_key.bks,
dk->rsa_public_key);
if (GNUNET_OK !=
GNUNET_CRYPTO_rsa_verify (c_hash,
sig,
dk->rsa_public_key))
{
GNUNET_break_op (0);
GNUNET_CRYPTO_rsa_signature_free (sig);
return GNUNET_SYSERR;
}
coin->sig.rsa_signature = sig;
coin->coin_priv = ps->coin_priv;
return GNUNET_OK;
}
2017-11-27 23:42:17 +01:00
/**
* Compute the commitment for a /refresh/melt operation from
* the respective public inputs.
*
* @param[out] rc set to the value the wallet must commit to
* @param kappa number of transfer public keys involved (must be #TALER_CNC_KAPPA)
* @param num_new_coins number of new coins to be created
2020-01-18 14:16:40 +01:00
* @param rcs commitments array of @a kappa commitments
2017-11-27 23:42:17 +01:00
* @param coin_pub public key of the coin to be melted
* @param amount_with_fee amount to be melted, including fee
*/
void
TALER_refresh_get_commitment (struct TALER_RefreshCommitmentP *rc,
uint32_t kappa,
uint32_t num_new_coins,
const struct TALER_RefreshCommitmentEntry *rcs,
const struct TALER_CoinSpendPublicKeyP *coin_pub,
const struct TALER_Amount *amount_with_fee)
{
struct GNUNET_HashContext *hash_context;
hash_context = GNUNET_CRYPTO_hash_context_start ();
/* first, iterate over transfer public keys for hash_context */
2019-08-25 16:18:24 +02:00
for (unsigned int i = 0; i<kappa; i++)
2017-11-27 23:42:17 +01:00
{
GNUNET_CRYPTO_hash_context_read (hash_context,
&rcs[i].transfer_pub,
sizeof (struct TALER_TransferPublicKeyP));
}
/* next, add all of the hashes from the denomination keys to the
hash_context */
2019-08-25 16:18:24 +02:00
for (unsigned int i = 0; i<num_new_coins; i++)
2017-11-27 23:42:17 +01:00
{
void *buf;
2017-11-27 23:42:17 +01:00
size_t buf_size;
/* The denomination keys should / must all be identical regardless
of what offset we use, so we use [0]. */
GNUNET_assert (kappa > 0); /* sanity check */
2019-08-25 16:18:24 +02:00
buf_size = GNUNET_CRYPTO_rsa_public_key_encode (
rcs[0].new_coins[i].dk->rsa_public_key,
&buf);
2017-11-27 23:42:17 +01:00
GNUNET_CRYPTO_hash_context_read (hash_context,
2019-08-25 16:18:24 +02:00
buf,
buf_size);
2017-11-27 23:42:17 +01:00
GNUNET_free (buf);
}
/* next, add public key of coin and amount being refreshed */
{
struct TALER_AmountNBO melt_amountn;
GNUNET_CRYPTO_hash_context_read (hash_context,
coin_pub,
sizeof (struct TALER_CoinSpendPublicKeyP));
TALER_amount_hton (&melt_amountn,
amount_with_fee);
GNUNET_CRYPTO_hash_context_read (hash_context,
&melt_amountn,
sizeof (struct TALER_AmountNBO));
}
/* finally, add all the envelopes */
2019-08-25 16:18:24 +02:00
for (unsigned int i = 0; i<kappa; i++)
2017-11-27 23:42:17 +01:00
{
const struct TALER_RefreshCommitmentEntry *rce = &rcs[i];
2019-08-25 16:18:24 +02:00
for (unsigned int j = 0; j<num_new_coins; j++)
2017-11-27 23:42:17 +01:00
{
const struct TALER_RefreshCoinData *rcd = &rce->new_coins[j];
GNUNET_CRYPTO_hash_context_read (hash_context,
rcd->coin_ev,
rcd->coin_ev_size);
}
}
/* Conclude */
GNUNET_CRYPTO_hash_context_finish (hash_context,
&rc->session_hash);
}
2020-12-04 12:25:58 +01:00
#if ! USE_GNUNET_RSA_BLINDING
/**
* The private information of an RSA key pair.
*
* FIXME: This declaration is evil, as it defines
* an opaque struct that is "owned" by GNUnet.
*/
struct GNUNET_CRYPTO_RsaPrivateKey
{
/**
* Libgcrypt S-expression for the RSA private key.
*/
gcry_sexp_t sexp;
};
/**
* The public information of an RSA key pair.
*
* FIXME: This declaration is evil, as it defines
* an opaque struct that is "owned" by GNUnet.
*/
struct GNUNET_CRYPTO_RsaPublicKey
{
/**
* Libgcrypt S-expression for the RSA public key.
*/
gcry_sexp_t sexp;
};
/**
* @brief an RSA signature
*
* FIXME: This declaration is evil, as it defines
* an opaque struct that is "owned" by GNUnet.
*/
struct GNUNET_CRYPTO_RsaSignature
{
/**
* Libgcrypt S-expression for the RSA signature.
*/
gcry_sexp_t sexp;
};
/**
* @brief RSA blinding key
*/
struct RsaBlindingKey
{
/**
* Random value used for blinding.
*/
gcry_mpi_t r;
};
/**
* Destroy a blinding key
*
* @param bkey the blinding key to destroy
*/
static void
rsa_blinding_key_free (struct RsaBlindingKey *bkey)
{
gcry_mpi_release (bkey->r);
GNUNET_free (bkey);
}
/**
* Extract values from an S-expression.
*
* @param array where to store the result(s)
* @param sexp S-expression to parse
* @param topname top-level name in the S-expression that is of interest
* @param elems names of the elements to extract
* @return 0 on success
*/
static int
key_from_sexp (gcry_mpi_t *array,
gcry_sexp_t sexp,
const char *topname,
const char *elems)
{
gcry_sexp_t list;
gcry_sexp_t l2;
const char *s;
unsigned int idx;
if (! (list = gcry_sexp_find_token (sexp, topname, 0)))
return 1;
l2 = gcry_sexp_cadr (list);
gcry_sexp_release (list);
list = l2;
if (! list)
return 2;
idx = 0;
for (s = elems; *s; s++, idx++)
{
if (! (l2 = gcry_sexp_find_token (list, s, 1)))
{
for (unsigned int i = 0; i < idx; i++)
{
gcry_free (array[i]);
array[i] = NULL;
}
gcry_sexp_release (list);
return 3; /* required parameter not found */
}
array[idx] = gcry_sexp_nth_mpi (l2, 1, GCRYMPI_FMT_USG);
gcry_sexp_release (l2);
if (! array[idx])
{
for (unsigned int i = 0; i < idx; i++)
{
gcry_free (array[i]);
array[i] = NULL;
}
gcry_sexp_release (list);
return 4; /* required parameter is invalid */
}
}
gcry_sexp_release (list);
return 0;
}
/**
* Test for malicious RSA key.
*
* Assuming n is an RSA modulous and r is generated using a call to
* GNUNET_CRYPTO_kdf_mod_mpi, if gcd(r,n) != 1 then n must be a
* malicious RSA key designed to deanomize the user.
*
* @param r KDF result
* @param n RSA modulus
* @return True if gcd(r,n) = 1, False means RSA key is malicious
*/
static int
rsa_gcd_validate (gcry_mpi_t r, gcry_mpi_t n)
{
gcry_mpi_t g;
int t;
g = gcry_mpi_new (0);
t = gcry_mpi_gcd (g, r, n);
gcry_mpi_release (g);
return t;
}
/**
* Computes a full domain hash seeded by the given public key.
* This gives a measure of provable security to the Taler exchange
* against one-more forgery attacks. See:
* https://eprint.iacr.org/2001/002.pdf
* http://www.di.ens.fr/~pointche/Documents/Papers/2001_fcA.pdf
*
* @param hash initial hash of the message to sign
* @param pkey the public key of the signer
* @param rsize If not NULL, the number of bytes actually stored in buffer
* @return MPI value set to the FDH, NULL if RSA key is malicious
*/
static gcry_mpi_t
rsa_full_domain_hash (const struct GNUNET_CRYPTO_RsaPublicKey *pkey,
const struct GNUNET_HashCode *hash)
{
gcry_mpi_t r, n;
void *xts;
size_t xts_len;
int ok;
/* Extract the composite n from the RSA public key */
GNUNET_assert (0 == key_from_sexp (&n, pkey->sexp, "rsa", "n"));
/* Assert that it at least looks like an RSA key */
GNUNET_assert (0 == gcry_mpi_get_flag (n, GCRYMPI_FLAG_OPAQUE));
/* We key with the public denomination key as a homage to RSA-PSS by *
* Mihir Bellare and Phillip Rogaway. Doing this lowers the degree *
* of the hypothetical polyomial-time attack on RSA-KTI created by a *
* polynomial-time one-more forgary attack. Yey seeding! */
xts_len = GNUNET_CRYPTO_rsa_public_key_encode (pkey, &xts);
GNUNET_CRYPTO_kdf_mod_mpi (&r,
n,
xts, xts_len,
hash, sizeof(*hash),
"RSA-FDA FTpsW!");
GNUNET_free (xts);
ok = rsa_gcd_validate (r, n);
gcry_mpi_release (n);
if (ok)
return r;
gcry_mpi_release (r);
return NULL;
}
/**
* Create a blinding key
*
* @param len length of the key in bits (i.e. 2048)
* @param bks pre-secret to use to derive the blinding key
* @return the newly created blinding key, NULL if RSA key is malicious
*/
static struct RsaBlindingKey *
rsa_blinding_key_derive (const struct GNUNET_CRYPTO_RsaPublicKey *pkey,
const struct GNUNET_CRYPTO_RsaBlindingKeySecret *bks)
{
char *xts = "Blinding KDF extractor HMAC key"; /* Trusts bks' randomness more */
struct RsaBlindingKey *blind;
gcry_mpi_t n;
blind = GNUNET_new (struct RsaBlindingKey);
GNUNET_assert (NULL != blind);
/* Extract the composite n from the RSA public key */
GNUNET_assert (0 == key_from_sexp (&n, pkey->sexp, "rsa", "n"));
/* Assert that it at least looks like an RSA key */
GNUNET_assert (0 == gcry_mpi_get_flag (n, GCRYMPI_FLAG_OPAQUE));
GNUNET_CRYPTO_kdf_mod_mpi (&blind->r,
n,
xts, strlen (xts),
bks, sizeof(*bks),
"Blinding KDF");
if (0 == rsa_gcd_validate (blind->r, n))
{
GNUNET_free (blind);
blind = NULL;
}
gcry_mpi_release (n);
return blind;
}
/**
* Print an MPI to a newly created buffer
*
* @param v MPI to print.
* @param[out] newly allocated buffer containing the result
* @return number of bytes stored in @a buffer
*/
static size_t
numeric_mpi_alloc_n_print (gcry_mpi_t v,
char **buffer)
{
size_t n;
char *b;
size_t rsize;
gcry_mpi_print (GCRYMPI_FMT_USG,
NULL,
0,
&n,
v);
b = GNUNET_malloc (n);
GNUNET_assert (0 ==
gcry_mpi_print (GCRYMPI_FMT_USG,
(unsigned char *) b,
n,
&rsize,
v));
*buffer = b;
return n;
}
#endif /* ! USE_GNUNET_RSA_BLINDING */
/**
* Blinds the given message with the given blinding key
*
* @param hash hash of the message to sign
* @param bkey the blinding key
* @param pkey the public key of the signer
* @param[out] buf set to a buffer with the blinded message to be signed
* @param[out] buf_size number of bytes stored in @a buf
* @return #GNUNET_YES if successful, #GNUNET_NO if RSA key is malicious
*/
int
TALER_rsa_blind (const struct GNUNET_HashCode *hash,
const struct GNUNET_CRYPTO_RsaBlindingKeySecret *bks,
struct GNUNET_CRYPTO_RsaPublicKey *pkey,
void **buf,
size_t *buf_size)
{
#if USE_GNUNET_RSA_BLINDING
return GNUNET_CRYPTO_rsa_blind (hash,
bks,
pkey,
buf,
buf_size);
#else
2020-12-04 12:25:58 +01:00
struct RsaBlindingKey *bkey;
gcry_mpi_t data;
gcry_mpi_t ne[2];
gcry_mpi_t r_e;
gcry_mpi_t data_r_e;
int ret;
GNUNET_assert (buf != NULL);
GNUNET_assert (buf_size != NULL);
ret = key_from_sexp (ne, pkey->sexp, "public-key", "ne");
if (0 != ret)
ret = key_from_sexp (ne, pkey->sexp, "rsa", "ne");
if (0 != ret)
{
GNUNET_break (0);
*buf = NULL;
*buf_size = 0;
return 0;
}
data = rsa_full_domain_hash (pkey, hash);
if (NULL == data)
goto rsa_gcd_validate_failure;
bkey = rsa_blinding_key_derive (pkey, bks);
if (NULL == bkey)
{
gcry_mpi_release (data);
goto rsa_gcd_validate_failure;
}
r_e = gcry_mpi_new (0);
gcry_mpi_powm (r_e,
bkey->r,
ne[1],
ne[0]);
data_r_e = gcry_mpi_new (0);
gcry_mpi_mulm (data_r_e,
data,
r_e,
ne[0]);
gcry_mpi_release (data);
gcry_mpi_release (ne[0]);
gcry_mpi_release (ne[1]);
gcry_mpi_release (r_e);
rsa_blinding_key_free (bkey);
*buf_size = numeric_mpi_alloc_n_print (data_r_e,
(char **) buf);
gcry_mpi_release (data_r_e);
return GNUNET_YES;
rsa_gcd_validate_failure:
/* We know the RSA key is malicious here, so warn the wallet. */
/* GNUNET_break_op (0); */
gcry_mpi_release (ne[0]);
gcry_mpi_release (ne[1]);
*buf = NULL;
*buf_size = 0;
return GNUNET_NO;
#endif
}
/**
* Unblind a blind-signed signature. The signature should have been generated
* with #GNUNET_CRYPTO_rsa_sign() using a hash that was blinded with
* #GNUNET_CRYPTO_rsa_blind().
*
* @param sig the signature made on the blinded signature purpose
* @param bks the blinding key secret used to blind the signature purpose
* @param pkey the public key of the signer
* @return unblinded signature on success, NULL if RSA key is bad or malicious.
*/
struct GNUNET_CRYPTO_RsaSignature *
TALER_rsa_unblind (const struct GNUNET_CRYPTO_RsaSignature *sig,
const struct GNUNET_CRYPTO_RsaBlindingKeySecret *bks,
struct GNUNET_CRYPTO_RsaPublicKey *pkey)
{
#if USE_GNUNET_RSA_BLINDING
return GNUNET_CRYPTO_rsa_unblind (sig,
bks,
pkey);
#else
2020-12-04 12:25:58 +01:00
struct RsaBlindingKey *bkey;
gcry_mpi_t n;
gcry_mpi_t s;
gcry_mpi_t r_inv;
gcry_mpi_t ubsig;
int ret;
struct GNUNET_CRYPTO_RsaSignature *sret;
ret = key_from_sexp (&n, pkey->sexp, "public-key", "n");
if (0 != ret)
ret = key_from_sexp (&n, pkey->sexp, "rsa", "n");
if (0 != ret)
{
GNUNET_break_op (0);
return NULL;
}
ret = key_from_sexp (&s, sig->sexp, "sig-val", "s");
if (0 != ret)
ret = key_from_sexp (&s, sig->sexp, "rsa", "s");
if (0 != ret)
{
gcry_mpi_release (n);
GNUNET_break_op (0);
return NULL;
}
bkey = rsa_blinding_key_derive (pkey, bks);
if (NULL == bkey)
{
/* RSA key is malicious since rsa_gcd_validate failed here.
* It should have failed during GNUNET_CRYPTO_rsa_blind too though,
* so the exchange is being malicious in an unfamilair way, maybe
* just trying to crash us. */
GNUNET_break_op (0);
gcry_mpi_release (n);
gcry_mpi_release (s);
return NULL;
}
r_inv = gcry_mpi_new (0);
if (1 !=
gcry_mpi_invm (r_inv,
bkey->r,
n))
{
/* We cannot find r mod n, so gcd(r,n) != 1, which should get *
* caught above, but we handle it the same here. */
GNUNET_break_op (0);
gcry_mpi_release (r_inv);
rsa_blinding_key_free (bkey);
gcry_mpi_release (n);
gcry_mpi_release (s);
return NULL;
}
ubsig = gcry_mpi_new (0);
gcry_mpi_mulm (ubsig, s, r_inv, n);
gcry_mpi_release (n);
gcry_mpi_release (r_inv);
gcry_mpi_release (s);
rsa_blinding_key_free (bkey);
sret = GNUNET_new (struct GNUNET_CRYPTO_RsaSignature);
GNUNET_assert (0 ==
gcry_sexp_build (&sret->sexp,
NULL,
"(sig-val (rsa (s %M)))",
ubsig));
gcry_mpi_release (ubsig);
return sret;
#endif
}
/* end of crypto.c */