aboutsummaryrefslogtreecommitdiff
path: root/tex-stuff/math.tex
blob: 7585cdc71228e1e96c243344ea3231ecb00b62f3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
\documentclass{article}
\usepackage[a4paper, margin=2cm]{geometry}
\usepackage{amsmath}
\begin{document}
\section{first price auction with tie breaking and private outcome (EC-Version)}
\subsection{Zero Knowledge Proofs}
\subsubsection{Proof of Knowledge of a EC DL}

Alice and Bob know $v$ and $g$ with $|g| = n$, but only Alice knows $x$, so that $v = xg$.

\begin{enumerate}
	\item Alice chooses $z$ at random and calculates $a = zg$.
	\item Alice computes $c = HASH(g,v,a)$ mod n.
	\item Alice sends $r = (z + cx)$ mod n and $a$ to Bob.
	\item Bob checks that $rg = a + cv$.
\end{enumerate}

\subsubsection{Proof of equality of two EC DL}

Alice and Bob know $v$, $w$, $g_1$ and $g_2$, but only Alice knows $x$, so that
$v = xg_1$ and $w = xg_2$.

\begin{enumerate}
	\item Alice chooses $z$ at random and calculates $a = zg_1$ and $b = zg_2$.
	\item Alice computes $c = HASH(g_1,g_2,v,w,a,b)$ mod n.
	\item Alice sends $r = (z + cx)$ mod n, $a$ and $b$ to Bob.
	\item Bob checks that $rg_1 = a + cv$ and $rg_2 = b + cw$.
\end{enumerate}

\subsubsection{Proof that an encrypted value is one out of two values}

Alice proves that an El Gamal encrypted value $(\alpha, \beta) = (m + ry, rg)$
either decrypts to $0$ or to the fixed value $g$ without revealing which is the
case, in other words, it is shown that $m \in \{0, g\}$.

If $m = 0$:

\begin{enumerate}
	\item Alice chooses $r_1$, $d_1$, $w$ at random and calculates $a_1 = r_1g + d_1\beta$, $b_1 = r_1y + d_1(\alpha - g)$, $a_2=wg$ and $b_2=wy$.
	\item Alice computes $c = HASH(g,\alpha,\beta,a_1,b_1,a_2,b_2)$ mod n.
	\item Alice chooses $d_2=c-d_1$ mod n and $r_2=w-rd_2$ mod n.
\end{enumerate}

If $m = g$:

\begin{enumerate}
	\item Alice chooses $r_2$, $d_2$, $w$ at random and calculates $a_1=wg$, $b_1=wy$, $a_2=r_2g + d_2\beta$ and $b_2=r_2y + d_2\alpha$.
	\item Alice computes $c = HASH(g,\alpha,\beta,a_1,b_1,a_2,b_2)$ mod n.
	\item Alice chooses $d_1=c-d_2$ mod n and $r_1=w-rd_1$ mod n.
\end{enumerate}

Then regardless of the value of $m$:

\begin{enumerate}
	\item Alice sends $(\alpha, \beta), a_1, b_1, a_2, b_2, c, d_1, d_2, r_1, r_2$ to Bob.
	\item Bob checks that $c=d_1+d_2$ mod n, $a_1=r_1g+d_1\beta$, $b_1=r_1y+d_1(\alpha-g)$, $a_2=r_2g+d_2\beta$ and $b_2=r_2y+d_2\alpha$.
\end{enumerate}

\subsection{Protocol}

\subsubsection{Generate public key}

\begin{enumerate}
	\item Choose $x_a$ and $m_{ij}, r_{aj}$ for each $i$ and $j$ at random.
	\item Publish $y_a=g^{x_a}$ along with a zero-knowledge proof of knowledge of $y_a$'s EC DL.
	\item Compute $y=\sum_{i=1}^ny_i$.
\end{enumerate}

\subsubsection{Round 1: Encrypt bid}

\begin{enumerate}
	\item Set $b_{aj}=\begin{cases}g & \mathrm{if}\quad j=b_a\\0 & \mathrm{else}\end{cases}$ and publish $\alpha_{aj}=b_{aj}+r_{aj}y$ and $\beta_{aj}=r_{aj}g$ for each j.
\end{enumerate}

\subsubsection{Round 2: Compute outcome}

\begin{enumerate}
	\item 
\end{enumerate}

\subsubsection{Round 3: Decrypt outcome}

\begin{enumerate}
	\item 
\end{enumerate}

\subsubsection{Epilogue: Outcome determination}

\begin{enumerate}
	\item 
\end{enumerate}

























\section{first price auction with tie breaking and private outcome}
\begin{align}
	v_{aj} & = \frac{\prod_{i=1}^n \gamma_{aj}^{\times i}}{\prod_{i=1}^n \varphi_{aj}^{\times i}} \\[2.0ex]
	& = \frac{\prod_{i=1}^n \gamma_{aj}^{\times i}}{\prod_{i=1}^n \left(\prod_{h=1}^n \delta_{aj}^{\times h}\right)^{x_{+i}}} \\[2.0ex]
	& = \frac{\prod_{i=1}^n \left(\left(\prod_{h=1}^n \prod_{d=j+1}^k \alpha_{hd}\right)\cdot\left(\prod_{d=1}^{j-1} \alpha_{ad}\right)\cdot\left(\prod_{h=1}^{a-1} \alpha_{hj}\right)\right)^{m_{aj}^{+i}}}{\prod_{i=1}^n \left(\prod_{h=1}^n \left(\left(\prod_{s=1}^n \prod_{d=j+1}^k \beta_{sd}\right)\cdot\left(\prod_{d=1}^{j-1} \beta_{ad}\right)\cdot\left(\prod_{s=1}^{a-1} \beta_{sj}\right)\right)^{m_{aj}^{+h}}\right)^{x_{+i}}} \\[2.0ex]
	& = \frac{\prod_{i=1}^n \left(\left(\prod_{h=1}^n \prod_{d=j+1}^k b_{hd} y^{r_{hd}}\right)\cdot\left(\prod_{d=1}^{j-1} b_{ad} y^{r_{ad}}\right)\cdot\left(\prod_{h=1}^{a-1} b_{hj} y^{r_{hj}}\right)\right)^{m_{aj}^{+i}}}{\prod_{i=1}^n \left(\prod_{h=1}^n \left(\left(\prod_{s=1}^n \prod_{d=j+1}^k g^{r_{sd}}\right)\cdot\left(\prod_{d=1}^{j-1} g^{r_{ad}}\right)\cdot\left(\prod_{s=1}^{a-1} g^{r_{sj}}\right)\right)^{m_{aj}^{+h}}\right)^{x_{+i}}} \\[2.0ex]
	& = \frac{\prod_{i=1}^n \left(\left(\prod_{h=1}^n \prod_{d=j+1}^k b_{hd} \left(\prod_{t=1}^n g^{x_{+t}}\right)^{r_{hd}}\right)\cdot\left(\prod_{d=1}^{j-1} b_{ad} \left(\prod_{t=1}^n g^{x_{+t}}\right)^{r_{ad}}\right)\cdot\left(\prod_{h=1}^{a-1} b_{hj} \left(\prod_{t=1}^n g^{x_{+t}}\right)^{r_{hj}}\right)\right)^{m_{aj}^{+i}}}{\prod_{i=1}^n \left(\prod_{h=1}^n \left(\left(\prod_{s=1}^n \prod_{d=j+1}^k g^{r_{sd}}\right)\cdot\left(\prod_{d=1}^{j-1} g^{r_{ad}}\right)\cdot\left(\prod_{s=1}^{a-1} g^{r_{sj}}\right)\right)^{m_{aj}^{+h}}\right)^{x_{+i}}}
\end{align}

\subsection{outcome function}
\begin{align}
	v_a & = \left((2U-I)\sum_{i=1}^n b_i-(2M+1)\mathbf{e}+(2M+2)Lb_a\right)R_a^* \\[2.0ex]
	v_{aj} & = \left(\sum_{i=1}^n \left(\sum_{d=j}^k b_{id} + \sum_{d=j+1}^k b_{id}\right)-(2M+1)+(2M+2)\sum_{d=1}^j b_{ad}\right)R_a^* \\[2.0ex]
	& \text{switch from additive finite group to multiplicative finite group} \\[2.0ex]
	v_{aj} & = \left(\frac{\displaystyle\prod_{i=1}^n \left(\prod_{d=j}^k b_{id} \cdot \prod_{d=j+1}^k b_{id}\right) \cdot \left(\prod_{d=1}^j b_{ad}\right)^{2M+2}}{(2M+1)g}\right)R_a^* \\[2.0ex]
\end{align}

\subsection{fixes to step 5 in (M+1)st Price auction from the 2003 paper pages 9 an 10}
\begin{align}
	\gamma_{ij} = & \frac{\prod_{h=1}^n \prod_{d=j}^k (\alpha_{hd}\alpha_{h,d+1})\left(\prod_{d=1}^j \alpha_{id}\right)^{2M+2}}{(2M+1)Y} \\
	\text{changed to} & \frac{\prod_{h=1}^n \left(\prod_{d=j}^k \alpha_{hd} \cdot \prod_{d=j+1}^k \alpha_{hd}\right)\left(\prod_{d=1}^j \alpha_{id}\right)^{2M+2}}{Y^{2M+1}} \\[2.0ex]
	\delta_{ij} = & \prod_{h=1}^n \prod_{d=j}^k (\beta_{hd}\beta_{h,d+1})\left(\prod_{d=1}^j \beta_{id}\right)^{2M+2} \\
	\text{changed to} & \prod_{h=1}^n \left(\prod_{d=j}^k \beta_{hd} \prod_{d=j+1}^k \beta_{hd}\right)\left(\prod_{d=1}^j \beta_{id}\right)^{2M+2}
\end{align}
\end{document}