1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
|
\documentclass{article}
\usepackage[a4paper, margin=2cm]{geometry}
\usepackage{amsmath}
\usepackage{amsfonts}
\begin{document}
\section{first price auction with tie breaking and private outcome (EC-Version)}
\subsection{Zero Knowledge Proofs}
\subsubsection{Proof 1: Knowledge of an ECDL}
Alice and Bob know $V$, $G$ and $q = |G|$, but only Alice knows $x$, so that
$V = xG$.
\begin{enumerate}
\item Alice chooses $z \bmod q$ at random and calculates $A = zG$.
\item Alice computes $c = HASH(G,V,A) \bmod q$.
\item Alice sends $G, V, A$ and $r = (z + cx) \bmod q$ to Bob.
\item Bob computes $c$ as above and checks that $rG = A + cV$.
\end{enumerate}
\begin{tabular}{r l}
Prover only knowledge: & $x$ \\
Common knowledge: & $V, G$ \\
Proof: & $r, A$
\end{tabular}
\subsubsection{Proof 2: Equality of two ECDL}
Alice and Bob know $V$, $W$, $G_1$ and $G_2$, but only Alice knows $x$, so that
$V = xG_1$ and $W = xG_2$.
\begin{enumerate}
\item Alice chooses $z \bmod q$ at random and calculates $A = zG_1$ and $B = zG_2$.
\item Alice computes $c = HASH(G_1,G_2,V,W,A,B) \bmod q$.
\item Alice sends $V, W, G_1, G_2, A, B$ and $r = (z + cx) \bmod q$ to Bob.
\item Bob computes $c$ as above and checks that $rG_1 = A + cV$ and $rG_2 = B + cW$.
\end{enumerate}
\begin{tabular}{r l}
Prover only knowledge: & $x$ \\
Common knowledge: & $V, W, G_1, G_2$ \\
Proof: & $r, A, B$
\end{tabular}
\subsubsection{Proof 3: An encrypted value is one out of two values}
Alice proves that an El Gamal encrypted value $(\alpha, \beta) = (M + rY, rG)$
either decrypts to $0$ or to the fixed value $G$ without revealing which is the
case, in other words, it is shown that $M \in \{0, G\}$. \\
\noindent If $M = 0$:
\begin{enumerate}
\item Alice chooses $r_1, d_1, w \bmod q$ at random and calculates $A_1 = r_1G + d_1\beta$, $B_1 = r_1Y + d_1(\alpha - G)$, $A_2=wG$ and $B_2=wY$.
\item Alice computes $c = HASH(G,\alpha,\beta,A_1,B_1,A_2,B_2) \bmod q$.
\item Alice chooses $d_2=c-d_1 \bmod q$ and $r_2=w-rd_2 \bmod q$.
\end{enumerate}
\noindent If $M = G$:
\begin{enumerate}
\item Alice chooses $r_2, d_2, w \bmod q$ at random and calculates $A_1=wG$, $B_1=wY$, $A_2=r_2G + d_2\beta$ and $B_2=r_2Y + d_2\alpha$.
\item Alice computes $c = HASH(G,\alpha,\beta,A_1,B_1,A_2,B_2) \bmod q$.
\item Alice chooses $d_1=c-d_2 \bmod q$ and $r_1=w-rd_1 \bmod q$.
\end{enumerate}
\noindent Then regardless of the value of $M$:
\begin{enumerate}
\item Alice sends $G, (\alpha, \beta), A_1, B_1, A_2, B_2, d_1, d_2, r_1, r_2$ to Bob.
\item Bob computes $c$ as above and checks that $c=d_1+d_2 \bmod q$, $A_1=r_1G+d_1\beta$, $B_1=r_1Y+d_1(\alpha-G)$, $A_2=r_2G+d_2\beta$ and $B_2=r_2Y+d_2\alpha$.
\end{enumerate}
\begin{tabular}{r l}
Prover only knowledge: & $r, x$ \\
Common knowledge: & $\alpha, \beta$ \\
Proof: & $A_1, A_2, B_1, B_2, d_1, d_2, r_1, r_2$
\end{tabular}
\subsection{First Price Auction Protocol With Private Outcome}
Let $n$ be the number of participating bidders/agents in the protocol and $k$ be
the amount of possible valuations/prices for the sold good. Let $G$ be the
base point of Ed25519 and $q = ord(G)$ the order of it. $0$ is the neutral point
for addition on Ed25519. $a \in \left\{1,2,\dots,n\right\}$ is the index of the
agent executing the protocol, while $i, h \in \left\{1, 2, \dots, n\right\}$ are
other agent indizes. $j, b_a \in \left\{1,2,\dots,k\right\}$ with $b_a$ denoting
the price $p_{b_a}$ bidder $a$ is willing to pay. $\forall j: p_j < p_{j+1}$.
\subsubsection{Generate public key}
\begin{enumerate}
\item Choose $x_{+a} \in \mathbb{Z}_q$ and $\forall i,j: m_{ij}^{+a}, r_{aj} \bmod q$ at random.
\item Publish $Y_{\times a}={x_{+a}}G$ along with Proof 1 of $Y_{\times a}$'s ECDL.
\item Compute $Y=\sum_{i=1}^nY_{\times i}$.
\end{enumerate}
\subsubsection{Round 1: Encrypt bid}
The message has $k$ parts, each consisting of $10$ Points plus an additional $3$
Points for the last proof. Therefore the message is $10k*32 + 3*32 = 320k + 96$
bytes large.
\begin{enumerate}
\item $\forall j:$ Set $B_{aj}=\begin{cases}G & \mathrm{if}\quad j=b_a\\0 & \mathrm{else}\end{cases}$ and publish $\alpha_{aj}=B_{aj}+r_{aj}Y$ and $\beta_{aj}=r_{aj}G$.
\item $\forall j:$ Use Proof 3 to show that $(\alpha_{aj}, \beta_{aj})$ decrypts to either $0$ or $G$.
\item Use Proof 2 to show that $ ECDL_Y\left(\left(\sum_{j=1}^k\alpha_{aj}\right) - G\right) = ECDL_G\left(\sum_{j=1}^k\beta_{aj}\right)$.
\end{enumerate}
\subsubsection{Round 2: Compute outcome}
The message has $nk$ parts, each consisting of $5$ Points. Therefore the message
is $5nk*32 = 160nk$ bytes large.
$\forall i,j:$ Compute and publish \\[2.0ex]
$\gamma_{ij}^{\times a} = m_{ij}^{+a}\displaystyle\left(\left(\sum_{h=1}^n\sum_{d=j+1}^k\alpha_{hd}\right)+\left(\sum_{d=1}^{j-1}\alpha_{id}\right)+\left(\sum_{h=1}^{i-1}\alpha_{hj}\right)\right)$ and \\[2.0ex]
$\delta_{ij}^{\times a} = m_{ij}^{+a}\displaystyle\left(\left(\sum_{h=1}^n\sum_{d=j+1}^k\beta_{hd}\right)+\left(\sum_{d=1}^{j-1}\beta_{id}\right)+\left(\sum_{h=1}^{i-1}\beta_{hj}\right)\right)$ \\[2.0ex]
with a corresponding Proof 2 for $ECDL(\gamma_{ij}^{\times a}) = ECDL(\delta_{ij}^{\times a})$.
\subsubsection{Round 3: Decrypt outcome}
$\forall i,j:$ Send $\varphi_{ij}^{\times a} =
x_{+a}\left(\sum_{h=1}^n\delta_{ij}^{\times h}\right)$ with a Proof 2 showing
$ECDL(\varphi_{ij}^{\times a}) = ECDL(Y_{\times a})$ to the seller who publishes
all $\varphi_{ij}^{\times h}$ and the corresponding proofs of correctness for
each $i, j$ and $h \neq i$ after having received all of them.
\subsubsection{Epilogue: Outcome determination}
\begin{enumerate}
\item $\forall j:$ Compute $V_{aj}=\sum_{i=1}^n\gamma_{aj}^{\times i} - \sum_{i=1}^n\varphi_{aj}^{\times i}$.
\item If $\exists w: V_{aw} = 0$, then bidder $a$ is the winner of the auction. $p_w$ is the selling price.
\end{enumerate}
\subsection{First Price Auction Protocol With Public Outcome}
\section{first price auction with tie breaking and private outcome}
\begin{align}
v_{aj} & = \frac{\prod_{i=1}^n \gamma_{aj}^{\times i}}{\prod_{i=1}^n \varphi_{aj}^{\times i}} \\[2.0ex]
& = \frac{\prod_{i=1}^n \gamma_{aj}^{\times i}}{\prod_{i=1}^n \left(\prod_{h=1}^n \delta_{aj}^{\times h}\right)^{x_{+i}}} \\[2.0ex]
& = \frac{\prod_{i=1}^n \left(\left(\prod_{h=1}^n \prod_{d=j+1}^k \alpha_{hd}\right)\cdot\left(\prod_{d=1}^{j-1} \alpha_{ad}\right)\cdot\left(\prod_{h=1}^{a-1} \alpha_{hj}\right)\right)^{m_{aj}^{+i}}}{\prod_{i=1}^n \left(\prod_{h=1}^n \left(\left(\prod_{s=1}^n \prod_{d=j+1}^k \beta_{sd}\right)\cdot\left(\prod_{d=1}^{j-1} \beta_{ad}\right)\cdot\left(\prod_{s=1}^{a-1} \beta_{sj}\right)\right)^{m_{aj}^{+h}}\right)^{x_{+i}}} \\[2.0ex]
& = \frac{\prod_{i=1}^n \left(\left(\prod_{h=1}^n \prod_{d=j+1}^k b_{hd} y^{r_{hd}}\right)\cdot\left(\prod_{d=1}^{j-1} b_{ad} y^{r_{ad}}\right)\cdot\left(\prod_{h=1}^{a-1} b_{hj} y^{r_{hj}}\right)\right)^{m_{aj}^{+i}}}{\prod_{i=1}^n \left(\prod_{h=1}^n \left(\left(\prod_{s=1}^n \prod_{d=j+1}^k g^{r_{sd}}\right)\cdot\left(\prod_{d=1}^{j-1} g^{r_{ad}}\right)\cdot\left(\prod_{s=1}^{a-1} g^{r_{sj}}\right)\right)^{m_{aj}^{+h}}\right)^{x_{+i}}} \\[2.0ex]
& = \frac{\prod_{i=1}^n \left(\left(\prod_{h=1}^n \prod_{d=j+1}^k b_{hd} \left(\prod_{t=1}^n g^{x_{+t}}\right)^{r_{hd}}\right)\cdot\left(\prod_{d=1}^{j-1} b_{ad} \left(\prod_{t=1}^n g^{x_{+t}}\right)^{r_{ad}}\right)\cdot\left(\prod_{h=1}^{a-1} b_{hj} \left(\prod_{t=1}^n g^{x_{+t}}\right)^{r_{hj}}\right)\right)^{m_{aj}^{+i}}}{\prod_{i=1}^n \left(\prod_{h=1}^n \left(\left(\prod_{s=1}^n \prod_{d=j+1}^k g^{r_{sd}}\right)\cdot\left(\prod_{d=1}^{j-1} g^{r_{ad}}\right)\cdot\left(\prod_{s=1}^{a-1} g^{r_{sj}}\right)\right)^{m_{aj}^{+h}}\right)^{x_{+i}}}
\end{align}
\subsection{outcome function}
\begin{align}
v_a & = \left((2U-I)\sum_{i=1}^n b_i-(2M+1)\mathbf{e}+(2M+2)Lb_a\right)R_a^* \\[2.0ex]
v_{aj} & = \left(\sum_{i=1}^n \left(\sum_{d=j}^k b_{id} + \sum_{d=j+1}^k b_{id}\right)-(2M+1)+(2M+2)\sum_{d=1}^j b_{ad}\right)R_a^* \\[2.0ex]
& \text{switch from additive finite group to multiplicative finite group} \\[2.0ex]
v_{aj} & = \left(\frac{\displaystyle\prod_{i=1}^n \left(\prod_{d=j}^k b_{id} \cdot \prod_{d=j+1}^k b_{id}\right) \cdot \left(\prod_{d=1}^j b_{ad}\right)^{2M+2}}{(2M+1)g}\right)R_a^* \\[2.0ex]
\end{align}
\subsection{fixes to step 5 in (M+1)st Price auction from the 2003 paper pages 9 an 10}
\begin{align}
\gamma_{ij} = & \frac{\prod_{h=1}^n \prod_{d=j}^k (\alpha_{hd}\alpha_{h,d+1})\left(\prod_{d=1}^j \alpha_{id}\right)^{2M+2}}{(2M+1)Y} \\
\text{changed to} & \frac{\prod_{h=1}^n \left(\prod_{d=j}^k \alpha_{hd} \cdot \prod_{d=j+1}^k \alpha_{hd}\right)\left(\prod_{d=1}^j \alpha_{id}\right)^{2M+2}}{Y^{2M+1}} \\[2.0ex]
\delta_{ij} = & \prod_{h=1}^n \prod_{d=j}^k (\beta_{hd}\beta_{h,d+1})\left(\prod_{d=1}^j \beta_{id}\right)^{2M+2} \\
\text{changed to} & \prod_{h=1}^n \left(\prod_{d=j}^k \beta_{hd} \prod_{d=j+1}^k \beta_{hd}\right)\left(\prod_{d=1}^j \beta_{id}\right)^{2M+2}
\end{align}
\end{document}
|