aboutsummaryrefslogtreecommitdiff
path: root/tex-stuff
diff options
context:
space:
mode:
authorMarkus Teich <markus.teich@stusta.mhn.de>2016-06-12 15:35:05 +0200
committerMarkus Teich <markus.teich@stusta.mhn.de>2016-06-12 15:35:05 +0200
commit5957a777076d014b17aada25afe0991397edbacc (patch)
tree2de131486f5f2d6a22d173f0ca1d7e8b0e5f8102 /tex-stuff
parent381d21c602b70afb8a3f8b07d7872b26fc4e2d7d (diff)
add third ZKP formula to math.tex
Diffstat (limited to 'tex-stuff')
-rw-r--r--tex-stuff/math.tex31
1 files changed, 27 insertions, 4 deletions
diff --git a/tex-stuff/math.tex b/tex-stuff/math.tex
index 09046d2..b4ad0e9 100644
--- a/tex-stuff/math.tex
+++ b/tex-stuff/math.tex
@@ -15,14 +15,14 @@ Alice and Bob know $v$ and $g$ with $|g| = n$, but only Alice knows $x$, so that
\item Bob checks that $rg = a + cv$.
\end{enumerate}
-\subsection{Proof of equality of tow EC DL}
+\subsection{Proof of equality of two EC DL}
Alice and Bob know $v$, $w$, $g_1$ and $g_2$, but only Alice knows $x$, so that
$v = xg_1$ and $w = xg_2$.
\begin{enumerate}
\item Alice chooses $z$ at random and calculates $a = zg_1$ and $b = zg_2$.
- \item Alice computes $c = HASH(g,v,w,a,b)$ mod n.
+ \item Alice computes $c = HASH(g_1,g_2,v,w,a,b)$ mod n.
\item Alice sends $r = (z + cx)$ mod n, $a$ and $b$ to Bob.
\item Bob checks that $rg_1 = a + cv$ and $rg_2 = b + cw$.
\end{enumerate}
@@ -30,8 +30,31 @@ $v = xg_1$ and $w = xg_2$.
\subsection{Proof that an encrypted value is one out of two values}
Alice proves that an El Gamal encrypted value $(\alpha, \beta) = (m + ry, rg)$
-either decrypts to $0$ or to a fixed value $z$ without revealing which is the
-case, in other words, it is shown that $m \epsilon \{0, z\}$.
+either decrypts to $0$ or to the fixed value $g$ without revealing which is the
+case, in other words, it is shown that $m \epsilon \{0, g\}$.
+
+If $m = 0$:
+
+\begin{enumerate}
+ \item Alice chooses $r_1$, $d_1$, $w$ at random and calculates $a_1 = r_1g + d_1\beta$, $b_1 = r_1y + d_1(\alpha - g)$, $a_2=wg$ and $b_2=wy$.
+ \item Alice computes $c = HASH(g,\alpha,\beta,a_1,b_1,a_2,b_2)$ mod n.
+ \item Alice chooses $d_2=c-d_1$ mod n and $r_2=w-rd_2$ mod n.
+\end{enumerate}
+
+If $m = g$:
+
+\begin{enumerate}
+ \item Alice chooses $r_2$, $d_2$, $w$ at random and calculates $a_1=wg$, $b_1=wy$, $a_2=r_2g + d_2\beta$ and $b_2=r_2y + d_2\alpha$.
+ \item Alice computes $c = HASH(g,\alpha,\beta,a_1,b_1,a_2,b_2)$ mod n.
+ \item Alice chooses $d_1=c-d_2$ mod n and $r_1=w-rd_1$ mod n.
+\end{enumerate}
+
+Then regardless of the value of $m$:
+
+\begin{enumerate}
+ \item Alice sends $(\alpha, \beta), a_1, b_1, a_2, b_2, c, d_1, d_2, r_1, r_2$ to Bob.
+ \item Bob checks that $c=d_1+d_2$ mod n, $a_1=r_1g+d_1\beta$, $b_1=r_1y+d_1(\alpha-g)$, $a_2=r_2g+d_2\beta$ and $b_2=r_2y+d_2\alpha$.
+\end{enumerate}
\section{first price auction with tie breaking and private outcome}
\begin{align}