1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
|
package veto
import (
"bytes"
"crypto/rand"
"crypto/sha512"
"encoding/base64"
"encoding/json"
"fmt"
"io"
"slices"
curve "filippo.io/edwards25519"
)
var b64 = base64.StdEncoding.WithPadding(base64.NoPadding)
type point curve.Point
type scalar curve.Scalar
// Representation of a vote with veto (true)
type Vote struct {
veto bool
private struct {
id *scalar
x *scalar
r *scalar
}
com *Commitment
}
// Commitment represents the public data sent by a participant
// in round 1 of the protocol. It is generated out of a Vote.
type Commitment struct {
Id *point `json:"index"`
Points struct {
X *point
R *point
} `json:"points"`
Proofs struct {
X *Proof
R *Proof
} `json:"proofs"`
}
// A Schnorr signature to prove knowledge of v for given g^v and i.
// Choosing a scalar v randomly, the signature consists of (V, r) with
//
// V := g^v, with randomly chosen v
// r := (v - x*h), with h := H(g, g^v, g^x, i), where i is given by the context.
//
// Verification of the signature is by comparing V =?= g^r * g^(x*h)
type Proof struct {
PV *point `json:"V"`
Sr *scalar `json:"r"`
Id *point `json:"id"`
}
func randomScalar(random io.Reader) (*scalar, error) {
var buf [64]byte
if random == nil {
random = rand.Reader
}
random.Read(buf[:])
s, e := new(curve.Scalar).SetUniformBytes(buf[:])
return (*scalar)(s), e
}
func (s *scalar) point() *point {
p := new(curve.Point).ScalarBaseMult((*curve.Scalar)(s))
return (*point)(p)
}
func (p *point) Bytes() []byte {
return ((*curve.Point)(p)).Bytes()
}
func one() *point {
return (*point)(curve.NewIdentityPoint())
}
type points []*point
func (pts points) prod() (product *point) {
product = (*point)(curve.NewIdentityPoint())
for _, p := range pts {
product = product.mult(p)
}
return product
}
// Return p (*) q in group
func (p *point) mult(q *point) *point {
// The implementation in edwards25519 uses addition for the group operation.
r := new(curve.Point).Add((*curve.Point)(p), (*curve.Point)(q))
return (*point)(r)
}
// Return n*P , for n scalar, and P point
func (p *point) scalarMult(s *scalar) *point {
r := new(curve.Point).ScalarMult((*curve.Scalar)(s), (*curve.Point)(p))
return (*point)(r)
}
// Return p^(-1)
func (p *point) inv() *point {
n := new(curve.Point).Negate((*curve.Point)(p))
return (*point)(n)
}
func (s *scalar) Bytes() []byte {
return ((*curve.Scalar)(s)).Bytes()
}
func (p *point) equal(q *point) bool {
return ((*curve.Point)(p)).Equal((*curve.Point)(q)) == 1
}
// Generates the proof, aka Schnorr signature, for given priv and i.
// Choosing a scalar v randomly, the signature consists of (V, r) with
//
// V := g^v, with randomly chosen v
// r := (v - x*h), with h := H(g, g^v, g^x, i), where i is given by the context.
//
// Verification of the signature is by comparing V =?= g^r * g^(x*h)
func (x *scalar) proof(id *point) (pr *Proof, e error) {
pr = &Proof{Id: id}
// choose random v
v, e := randomScalar(nil)
if e != nil {
return nil, e
}
// calculate g^v
pr.PV = v.point()
// calculate g^x
gx := x.point()
// calculate h := H(g, g^v, g^x, i)
h, e := hash(pr.PV, gx, id)
if e != nil {
return nil, e
}
// Calculate r := v - x*h
xh := new(curve.Scalar).Multiply((*curve.Scalar)(x), h)
r := new(curve.Scalar).Subtract((*curve.Scalar)(v), xh)
pr.Sr = (*scalar)(r)
return pr, nil
}
// Calculate h := H(g, g^v, g^x, i)
func hash(gv, gx *point, id *point) (*curve.Scalar, error) {
h512 := sha512.New()
h512.Write(curve.NewGeneratorPoint().Bytes())
h512.Write(gv.Bytes())
h512.Write(gx.Bytes())
h512.Write(id.Bytes())
hb := h512.Sum(nil)
return new(curve.Scalar).SetUniformBytes(hb)
}
func combineErr(es ...error) error {
var re error
for _, e := range es {
if e != nil {
if re == nil {
re = e
} else {
re = fmt.Errorf("%v and %v", re, e)
}
}
}
return re
}
// Verifies that g^v == g^r*g^(x*h)
func verifyProof(V *point, Gx *point, r *scalar, id *point) (ok bool) {
// Calculate h = H(g, g^v, g^x, id)
h, e := hash(V, Gx, id)
if e != nil {
return false
}
// Calculate g^(x*h) = (g^x)^h
gxh := new(curve.Point).ScalarMult(h, (*curve.Point)(Gx))
// Calculate g^r
gr := r.point()
// Calculate g^r*g^(x*h)
// Note that the edwards25519 package uses Addtion as the group
grgxh := gr.mult((*point)(gxh))
// Return true if g^v == g^r*g^(x*h)
return V.equal(grgxh)
}
// Verify verifies the proofs for both, g^x and g^r
func (c *Commitment) VerifyProofs() (ok bool) {
okX := verifyProof(c.Proofs.X.PV, c.Points.X, c.Proofs.X.Sr, c.Id)
okR := verifyProof(c.Proofs.R.PV, c.Points.R, c.Proofs.R.Sr, c.Id)
return okX && okR
}
// Generates a vote with commitments and proofs and takes the input for
// the randomness from the given io.Reader
func newVoteWithRand(veto bool, rand io.Reader) (v *Vote, e error) {
v = &Vote{
veto: veto,
}
var e1, e2, e3 error
v.private.id, e1 = randomScalar(rand)
v.private.x, e2 = randomScalar(rand)
v.private.r, e3 = randomScalar(rand)
e = combineErr(e1, e2, e3)
if e != nil {
return nil, e
}
c := new(Commitment)
v.com = c
c.Id = v.private.id.point()
c.Points.X = v.private.x.point()
c.Points.R = v.private.r.point()
c.Proofs.X, e1 = v.private.x.proof(c.Id)
c.Proofs.R, e2 = v.private.r.proof(c.Id)
return v, combineErr(e1, e2)
}
// NewVote generates a vote for given bit and index, taking crypt/Reader as
// source for randomness
func NewVote(bit bool) (vote *Vote, e error) {
return newVoteWithRand(bit, nil)
}
// Generate the commitment to the Vote
func (v *Vote) Commitment() *Commitment {
return v.com
}
func (p *point) String() string {
return b64.EncodeToString(p.Bytes())
}
func (s *scalar) String() string {
return b64.EncodeToString(s.Bytes())
}
func (s *scalar) MarshalJSON() ([]byte, error) {
return []byte(fmt.Sprintf(`"%s"`, s)), nil
}
func (p *point) MarshalJSON() ([]byte, error) {
return []byte(fmt.Sprintf(`"%s"`, p)), nil
}
func (c *Commitment) String() string {
buf := &bytes.Buffer{}
dec := json.NewEncoder(buf)
dec.SetIndent("", " ")
e := dec.Encode(c)
if e != nil {
return fmt.Sprintf("<error encoding: %v>", e)
}
return buf.String()
}
type coms []*Commitment
func (coms coms) prod() (product *point) {
product = (*point)(curve.NewIdentityPoint())
for _, com := range coms {
product = product.mult(com.Points.X)
}
return product
}
// For a given slice of commitments of length n, compute
//
// g^y_i = Prod(g^x_j, 1, i-1)/Prod(g^x_j, i+1, n)
func (coms coms) computeGy(index int) *point {
gy1 := coms[:index].prod()
gy2 := coms[index+1:].prod().inv()
return gy1.mult(gy2)
}
func (v *Vote) Round2(participants []*Commitment) (gcy *point, e error) {
var c int
for _, p := range participants {
if p.Id.equal(v.com.Id) {
c += 1
}
}
if c == 0 {
return nil, fmt.Errorf("/me(%s) not in participants", v.com.Id)
} else if c > 1 {
return nil, fmt.Errorf("/me(%s) %d times in participants", v.com.Id, c)
}
slices.SortStableFunc(participants, func(a, b *Commitment) int {
return bytes.Compare(a.Id.Bytes(), b.Id.Bytes())
})
index := slices.IndexFunc(participants, func(c *Commitment) bool { return c.Id.equal(v.com.Id) })
if index < 0 {
// Should not happen!
return nil, fmt.Errorf("Wait, what!? Couldn't find /me(%s) after sorting!", v.com.Id)
}
gy := (coms(participants)).computeGy(index)
if v.veto {
return gy.scalarMult(v.private.r), nil
}
return gy.scalarMult(v.private.x), nil
}
func (pts points) IsVetoed() bool {
product := pts.prod()
one := one()
return !one.equal(product)
}
|