1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
|
package nizk
import . "kesim.org/seal/common"
type Stage1 struct {
x *Scalar
y *Scalar
r *Scalar
com *Stage1Commitment
prf *Stage1Proof
bit *Bit
}
type Stage1Commitment struct {
R *Point
X *Point
Y *Point
Z *Point
}
// Represents the proof of statements of the following form:
//
// [ Z=g^(xy) && X=g^x && Y=g^y && C=g^(αβ) && A=g^α && B=g^β ]
// || [ Z=g^(xr) && X=g^x && R=g^r && C=g^(αβ+1) && A=g^α && B=g^β ]
//
// for given Z, X, Y, R, C, A and B
type Stage1Proof struct {
Ch [2]*Scalar
Rho [2][2]*Scalar
}
func (b *Bit) Stage1() *Stage1 {
var x [3]*Scalar
for i := range x {
x[i] = Curve.RandomScalar()
}
return b.Stage1FromScalars(x[0], x[1], x[2])
}
func (b *Bit) Stage1FromScalars(x, y, r *Scalar) *Stage1 {
return &Stage1{
x: x,
y: y,
r: r,
bit: b,
}
}
func (s *Stage1) commit() *Stage1Commitment {
if s.com != nil {
return s.com
}
var Z *Point
if s.bit.IsSet() {
Z = G.Exp(s.x.Mul(s.r))
} else {
Z = G.Exp(s.x.Mul(s.y))
}
s.com = &Stage1Commitment{
Z: Z,
X: G.Exp(s.x),
Y: G.Exp(s.y),
R: G.Exp(s.r),
}
return s.com
}
func (s *Stage1) proof() *Stage1Proof {
var ε [2][4]*Point
var r1, r2, ρ1, ρ2, ω *Scalar
for _, s := range []**Scalar{&r1, &r2, &ρ1, &ρ2, &ω} {
*s = Curve.RandomScalar()
}
c := s.commit()
bc, _ := s.bit.Commit()
if s.bit.IsSet() {
ε[0][0] = G.Exp(r1).Mul(c.X.Exp(ω))
ε[0][1] = G.Exp(r2).Mul(bc.A.Exp(ω))
ε[0][2] = c.Y.Exp(r1).Mul(c.Z.Exp(ω))
ε[0][3] = bc.B.Exp(r2).Mul(bc.C.Exp(ω))
ε[1][0] = G.Exp(ρ1)
ε[1][1] = G.Exp(ρ2)
ε[1][2] = c.R.Exp(ρ1)
ε[1][3] = bc.B.Exp(ρ2)
} else {
ε[0][0] = G.Exp(r1)
ε[0][1] = G.Exp(r2)
ε[0][2] = c.Y.Exp(r1)
ε[0][3] = bc.B.Exp(r2)
ε[1][0] = G.Exp(ρ1).Mul(c.X.Exp(ω))
ε[1][1] = G.Exp(ρ2).Mul(bc.A.Exp(ω))
ε[1][2] = c.R.Exp(ρ1).Mul(c.Z.Exp(ω))
ε[1][3] = bc.B.Exp(ρ2).Mul(bc.C.Div(G).Exp(ω))
}
p := []Bytes{G, bc.A, bc.B, bc.C, c.R, c.X, c.Y, c.Z}
for _, e := range ε[0] {
p = append(p, e)
}
for _, e := range ε[1] {
p = append(p, e)
}
ch := Challenge(p...)
pr := &Stage1Proof{}
α, _ := s.bit.Scalars()
if s.bit.IsSet() {
pr.Ch[0] = ω
pr.Ch[1] = ch.Sub(ω)
pr.Rho[0][0] = r1
pr.Rho[0][1] = r2
pr.Rho[1][0] = ρ1.Sub(s.x.Mul(pr.Ch[1]))
pr.Rho[1][1] = ρ2.Sub(α.Mul(pr.Ch[1]))
} else {
pr.Ch[0] = ch.Sub(ω)
pr.Ch[1] = ω
pr.Rho[0][0] = r1.Sub(s.x.Mul(pr.Ch[0]))
pr.Rho[0][1] = r2.Sub(α.Mul(pr.Ch[0]))
pr.Rho[1][0] = ρ1
pr.Rho[1][1] = ρ2
}
return pr
}
func (s *Stage1) Commit() (*Stage1Commitment, *Stage1Proof) {
return s.commit(), s.proof()
}
func (c1 *Stage1Commitment) Verify(c *Commitment, p *Stage1Proof) bool {
var ε [2][4]*Point
ε[0][0] = G.Exp(p.Rho[0][0]).Mul(c1.X.Exp(p.Ch[0]))
ε[0][1] = G.Exp(p.Rho[0][1]).Mul(c.A.Exp(p.Ch[0]))
ε[0][2] = c1.Y.Exp(p.Rho[0][0]).Mul(c1.Z.Exp(p.Ch[0]))
ε[0][3] = c.B.Exp(p.Rho[0][1]).Mul(c.C.Exp(p.Ch[0]))
ε[1][0] = G.Exp(p.Rho[1][0]).Mul(c1.X.Exp(p.Ch[1]))
ε[1][1] = G.Exp(p.Rho[1][1]).Mul(c.A.Exp(p.Ch[1]))
ε[1][2] = c1.R.Exp(p.Rho[1][0]).Mul(c1.Z.Exp(p.Ch[1]))
ε[1][3] = c.B.Exp(p.Rho[1][1]).Mul(c.C.Div(G).Exp(p.Ch[1]))
points := []Bytes{G, c.A, c.B, c.C, c1.R, c1.X, c1.Y, c1.Z}
for _, e := range ε[0] {
points = append(points, e)
}
for _, e := range ε[1] {
points = append(points, e)
}
ch := Challenge(points...)
return p.Ch[0].Add(p.Ch[1]).Equal(ch)
}
|