aboutsummaryrefslogtreecommitdiff
path: root/nizk/commit/commit.go
blob: 5238c158faa1a53e541b2b6181a1cf974910302a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
package commit

import (
	. "kesim.org/seal/nizk"
)

// This is a construction of a proof of a statement of the form
// σ ==	   [(Φ = g^(αβ))   && (A = g^α) && (Β = g^β)]
//		|| [(Φ = g^(αβ+1)) && (A = g^α) && (Β = g^β)]
// for given Φ, A and B

type Statement struct {
	α    *Scalar
	β    *Scalar
	plus bool
	*Commitment
}

type Commitment struct {
	Φ *Point
	A *Point
	B *Point
}

func NewStatement(α, β *Scalar, plus bool) *Statement {
	return &Statement{
		α:          α,
		β:          β,
		plus:       plus,
		Commitment: commitment(α, β, plus),
	}
}

func commitment(α, β *Scalar, plus bool) *Commitment {
	var Φ *Point
	φ := α.Mul(β)

	if plus {
		Φ = G.Exp(φ.Add(One))
	} else {
		Φ = G.Exp(φ)
	}
	return &Commitment{
		Φ: Φ,
		A: G.Exp(α),
		B: G.Exp(β),
	}
}

func (s *Statement) Commit() *Commitment {
	return s.Commitment
}

type Proof struct {
	Ch  [2]*Scalar
	Rho [2]*Scalar
}

func (s *Statement) Proof() *Proof {
	var ε [2][2]*Point
	var r1, r2, ω *Scalar
	r1 = Curve.RandomScalar()
	r2 = Curve.RandomScalar()
	ω = Curve.RandomScalar()

	if s.plus {
		ε[0][0] = G.Exp(r1)
		ε[0][1] = s.B.Exp(r1).Mul(G.Exp(ω))
		ε[1][0] = G.Exp(r2)
		ε[1][1] = s.B.Exp(r2)
	} else {
		ε[0][0] = G.Exp(r1)
		ε[0][1] = s.B.Exp(r1)
		ε[1][0] = G.Exp(r2).Mul(s.A.Exp(ω))
		ε[1][1] = s.B.Exp(r2).Mul(s.Φ.Div(G).Exp(ω))
	}

	ch := Challenge(G, s.Φ, s.A, s.B, ε[0][0], ε[0][1], ε[1][0], ε[1][1])
	pr := &Proof{}

	if s.plus {
		pr.Ch[0] = ω
		pr.Ch[1] = ch.Sub(ω)
		pr.Rho[0] = r1.Sub(s.α.Mul(pr.Ch[0]))
		pr.Rho[1] = r2.Sub(s.α.Mul(pr.Ch[1]))
	} else {
		pr.Ch[0] = ch.Sub(ω)
		pr.Ch[1] = ω
		pr.Rho[0] = r1.Sub(s.α.Mul(pr.Ch[0]))
		pr.Rho[1] = r2
	}

	return pr
}

func (c *Commitment) Verify(p *Proof) bool {
	var ε [2][2]*Point
	ε[0][0] = G.Exp(p.Rho[0]).Mul(c.A.Exp(p.Ch[0]))
	ε[0][1] = c.B.Exp(p.Rho[0]).Mul(c.Φ.Exp(p.Ch[0]))
	ε[1][0] = G.Exp(p.Rho[1]).Mul(c.A.Exp(p.Ch[1]))
	ε[1][1] = c.B.Exp(p.Rho[1]).Mul(c.Φ.Div(G).Exp(p.Ch[1]))
	ch := Challenge(G, c.Φ, c.A, c.B, ε[0][0], ε[0][1], ε[1][0], ε[1][1])
	return p.Ch[0].Add(p.Ch[1]).Equal(ch)
}