aboutsummaryrefslogtreecommitdiff
path: root/stage2.go
diff options
context:
space:
mode:
Diffstat (limited to 'stage2.go')
-rw-r--r--stage2.go221
1 files changed, 221 insertions, 0 deletions
diff --git a/stage2.go b/stage2.go
new file mode 100644
index 0000000..7d82d89
--- /dev/null
+++ b/stage2.go
@@ -0,0 +1,221 @@
+package seal
+
+import (
+ . "kesim.org/seal/common"
+)
+
+// Represents the proof of a statement of the following form:
+//
+// ( Z=g^(x*y) && X=g^x && Y=g^y && Z_=g^(x_*y_) && X_=g^x_ && Y_=g^y_ ) // case "lost"
+// || ( Z=g^(x*y) && X=g^x && Y=g^y && Z_=g^(x_*r_) && X_=g^x_ && R_=g^r_ && C=g^(a*b) && A=g^a && B=g^b ) // case "unset"
+// || ( Z=g^(x*r) && X=g^x && R=g^r && Z_=g^(x_*r_) && X_=g^x_ && R_=g^r_ && C=g^(a*b+1) && A=g^a && B=g^b ) // case "set"
+//
+// for given A, B, C, R, X, Y, Z, R_, X_, Y_, Z_ on the curve
+type Stage2Proof struct {
+ Ch [3]*Scalar
+ R1 [3]*Scalar
+ R2 [3]*Scalar
+ R3 [2]*Scalar
+}
+
+func (b *Bit) RevealStage2(lost bool, prev *Bit, Xs ...*Point) (rv2 *StageReveal, pr *Stage2Proof) {
+ if b.Stage == nil {
+ b.StageCommit()
+ }
+ s := b.Stage
+
+ var (
+ ε1, ε1_ [3]Bytes
+ ε2, ε2_ [3]Bytes
+ ε3, ε3_ [2]Bytes
+
+ ρ1, ρ2 [3]*Scalar
+ ρ3 [2]*Scalar
+ ω [2]*Scalar
+ )
+
+ for _, s := range [][]*Scalar{ρ1[:], ρ2[:], ρ3[:], ω[:]} {
+ for i := range s {
+ s[i] = Curve.RandomScalar()
+ }
+ }
+
+ c1 := prev.StageCommitment
+ c2 := s.StageCommitment
+ rv1 := prev.StageReveal
+ b.StageReveal = b.reveal(prev.Sent, Xs...)
+ rv2 = b.StageReveal
+
+ if lost {
+ ε1[0] = G.Exp(ρ1[0]).Mul(c2.X.Exp(ω[0]))
+ ε1[1] = G.Exp(ρ1[1]).Mul(c1.X.Exp(ω[0]))
+ ε1[2] = G.Exp(ρ1[2]).Mul(b.A.Exp(ω[0]))
+
+ ε1_[0] = c2.R.Exp(ρ1[0]).Mul(rv2.Z.Exp(ω[0]))
+ ε1_[1] = c1.R.Exp(ρ1[1]).Mul(rv1.Z.Exp(ω[0]))
+ ε1_[2] = b.B.Exp(ρ1[2]).Mul(b.C.Div(G).Exp(ω[0]))
+
+ ε2[0] = G.Exp(ρ2[0]).Mul(c2.X.Exp(ω[1]))
+ ε2[1] = G.Exp(ρ2[1]).Mul(c1.X.Exp(ω[1]))
+ ε2[2] = G.Exp(ρ2[2]).Mul(b.A.Exp(ω[1]))
+
+ ε2_[0] = rv2.Y.Exp(ρ2[0]).Mul(rv2.Z.Exp(ω[1]))
+ ε2_[1] = c1.R.Exp(ρ2[1]).Mul(rv1.Z.Exp(ω[1]))
+ ε2_[2] = b.B.Exp(ρ2[2]).Mul(b.C.Exp(ω[1]))
+
+ ε3[0] = G.Exp(ρ3[0])
+ ε3[1] = G.Exp(ρ3[1])
+
+ ε3_[0] = rv2.Y.Exp(ρ3[0])
+ ε3_[1] = rv1.Y.Exp(ρ3[1])
+ } else {
+ if b.IsSet() {
+ ε1[0] = G.Exp(ρ1[0])
+ ε1[1] = G.Exp(ρ1[1])
+ ε1[2] = G.Exp(ρ1[2])
+
+ ε1_[0] = c2.R.Exp(ρ1[0])
+ ε1_[1] = c1.R.Exp(ρ1[1])
+ ε1_[2] = b.B.Exp(ρ1[2])
+
+ ε2[0] = G.Exp(ρ2[0]).Mul(c2.X.Exp(ω[0]))
+ ε2[1] = G.Exp(ρ2[1]).Mul(c1.X.Exp(ω[0]))
+ ε2[2] = G.Exp(ρ2[2]).Mul(b.A.Exp(ω[0]))
+
+ ε2_[0] = rv2.Y.Exp(ρ2[0]).Mul(rv2.Z.Exp(ω[0]))
+ ε2_[1] = c1.R.Exp(ρ2[1]).Mul(rv1.Z.Exp(ω[0]))
+ ε2_[2] = b.B.Exp(ρ2[2]).Mul(b.C.Exp(ω[0]))
+
+ ε3[0] = G.Exp(ρ3[0]).Mul(c2.X.Exp(ω[1]))
+ ε3[1] = G.Exp(ρ3[1]).Mul(c1.X.Exp(ω[1]))
+
+ ε3_[0] = rv2.Y.Exp(ρ3[0]).Mul(rv2.Z.Exp(ω[1]))
+ ε3_[1] = rv1.Y.Exp(ρ3[1]).Mul(rv1.Z.Exp(ω[1]))
+ } else {
+ ε1[0] = G.Exp(ρ1[0]).Mul(c2.X.Exp(ω[0]))
+ ε1[1] = G.Exp(ρ1[1]).Mul(c1.X.Exp(ω[0]))
+ ε1[2] = G.Exp(ρ1[2]).Mul(b.A.Exp(ω[0]))
+
+ ε1_[0] = c2.R.Exp(ρ1[0]).Mul(rv2.Z.Exp(ω[0]))
+ ε1_[1] = c1.R.Exp(ρ1[1]).Mul(rv1.Z.Exp(ω[0]))
+ ε1_[2] = b.B.Exp(ρ1[2]).Mul(b.C.Div(G).Exp(ω[0]))
+
+ ε2[0] = G.Exp(ρ2[0])
+ ε2[1] = G.Exp(ρ2[1])
+ ε2[2] = G.Exp(ρ2[2])
+
+ ε2_[0] = rv2.Y.Exp(ρ2[0])
+ ε2_[1] = c1.R.Exp(ρ2[1])
+ ε2_[2] = b.B.Exp(ρ2[2])
+
+ ε3[0] = G.Exp(ρ3[0]).Mul(c2.X.Exp(ω[1]))
+ ε3[1] = G.Exp(ρ3[1]).Mul(c1.X.Exp(ω[1]))
+
+ ε3_[0] = rv2.Y.Exp(ρ3[0]).Mul(rv2.Z.Exp(ω[1]))
+ ε3_[1] = rv1.Y.Exp(ρ3[1]).Mul(rv1.Z.Exp(ω[1]))
+ }
+ }
+
+ points := []Bytes{G, b.A, b.B, b.C, c2.R, c2.X, rv2.Y, rv2.Z, c1.R, c1.X, rv1.Y, rv1.Z}
+ points = append(points, ε1[:]...)
+ points = append(points, ε2[:]...)
+ points = append(points, ε3[:]...)
+ points = append(points, ε1_[:]...)
+ points = append(points, ε2_[:]...)
+ points = append(points, ε3_[:]...)
+
+ ch := Challenge(points...)
+ pr = &Stage2Proof{}
+
+ if lost {
+ pr.Ch[0] = ω[0]
+ pr.Ch[1] = ω[1]
+ pr.Ch[2] = ch.Sub(ω[0]).Sub(ω[1])
+
+ pr.R1[0] = ρ1[0]
+ pr.R1[1] = ρ1[1]
+ pr.R1[2] = ρ1[2]
+
+ pr.R2[0] = ρ2[0]
+ pr.R2[1] = ρ2[1]
+ pr.R2[2] = ρ2[2]
+
+ pr.R3[0] = ρ3[0].Sub(s.x.Mul(pr.Ch[2]))
+ pr.R3[1] = ρ3[1].Sub(prev.x.Mul(pr.Ch[2]))
+ } else {
+ if b.IsSet() {
+ pr.Ch[0] = ch.Sub(ω[0]).Sub(ω[1])
+ pr.Ch[1] = ω[0]
+ pr.Ch[2] = ω[1]
+
+ pr.R1[0] = ρ1[0].Sub(s.x.Mul(pr.Ch[0]))
+ pr.R1[1] = ρ1[1].Sub(prev.x.Mul(pr.Ch[0]))
+ pr.R1[2] = ρ1[2].Sub(b.α.Mul(pr.Ch[0]))
+
+ pr.R2[0] = ρ2[0]
+ pr.R2[1] = ρ2[1]
+ pr.R2[2] = ρ2[2]
+
+ pr.R3[0] = ρ3[0]
+ pr.R3[1] = ρ3[1]
+ } else {
+ pr.Ch[0] = ω[0]
+ pr.Ch[1] = ch.Sub(ω[0]).Sub(ω[1])
+ pr.Ch[2] = ω[1]
+
+ pr.R1[0] = ρ1[0]
+ pr.R1[1] = ρ1[1]
+ pr.R1[2] = ρ1[2]
+
+ pr.R2[0] = ρ2[0].Sub(s.x.Mul(pr.Ch[1]))
+ pr.R2[1] = ρ2[1].Sub(prev.x.Mul(pr.Ch[1]))
+ pr.R2[2] = ρ2[2].Sub(b.α.Mul(pr.Ch[1]))
+
+ pr.R3[0] = ρ3[0]
+ pr.R3[1] = ρ3[1]
+ }
+ }
+
+ return rv2, pr
+}
+
+func (c *Commitment) VerifyStage2(c1, c2 *StageCommitment, r1, r2 *StageReveal, p *Stage2Proof) bool {
+ var (
+ e1, e1_ [3]Bytes
+ e2, e2_ [3]Bytes
+ e3, e3_ [2]Bytes
+ )
+ e1[0] = G.Exp(p.R1[0]).Mul(c2.X.Exp(p.Ch[0]))
+ e1[1] = G.Exp(p.R1[1]).Mul(c1.X.Exp(p.Ch[0]))
+ e1[2] = G.Exp(p.R1[2]).Mul(c.A.Exp(p.Ch[0]))
+
+ e1_[0] = c2.R.Exp(p.R1[0]).Mul(r2.Z.Exp(p.Ch[0]))
+ e1_[1] = c1.R.Exp(p.R1[1]).Mul(r1.Z.Exp(p.Ch[0]))
+ e1_[2] = c.B.Exp(p.R1[2]).Mul(c.C.Div(G).Exp(p.Ch[0]))
+
+ e2[0] = G.Exp(p.R2[0]).Mul(c2.X.Exp(p.Ch[1]))
+ e2[1] = G.Exp(p.R2[1]).Mul(c1.X.Exp(p.Ch[1]))
+ e2[2] = G.Exp(p.R2[2]).Mul(c.A.Exp(p.Ch[1]))
+
+ e2_[0] = r2.Y.Exp(p.R2[0]).Mul(r2.Z.Exp(p.Ch[1]))
+ e2_[1] = c1.R.Exp(p.R2[1]).Mul(r1.Z.Exp(p.Ch[1]))
+ e2_[2] = c.B.Exp(p.R2[2]).Mul(c.C.Exp(p.Ch[1]))
+
+ e3[0] = G.Exp(p.R3[0]).Mul(c2.X.Exp(p.Ch[2]))
+ e3[1] = G.Exp(p.R3[1]).Mul(c1.X.Exp(p.Ch[2]))
+
+ e3_[0] = r2.Y.Exp(p.R3[0]).Mul(r2.Z.Exp(p.Ch[2]))
+ e3_[1] = r1.Y.Exp(p.R3[1]).Mul(r1.Z.Exp(p.Ch[2]))
+
+ points := []Bytes{G, c.A, c.B, c.C, c2.R, c2.X, r2.Y, r2.Z, c1.R, c1.X, r1.Y, r1.Z}
+ points = append(points, e1[:]...)
+ points = append(points, e2[:]...)
+ points = append(points, e3[:]...)
+ points = append(points, e1_[:]...)
+ points = append(points, e2_[:]...)
+ points = append(points, e3_[:]...)
+
+ ch := Challenge(points...)
+
+ return p.Ch[0].Add(p.Ch[1]).Add(p.Ch[2]).Equal(ch)
+}