aboutsummaryrefslogtreecommitdiff
path: root/stage1.go
diff options
context:
space:
mode:
Diffstat (limited to 'stage1.go')
-rw-r--r--stage1.go196
1 files changed, 196 insertions, 0 deletions
diff --git a/stage1.go b/stage1.go
new file mode 100644
index 0000000..d1ac814
--- /dev/null
+++ b/stage1.go
@@ -0,0 +1,196 @@
+package seal
+
+import (
+ . "kesim.org/seal/common"
+)
+
+type Stage struct {
+ x *Scalar
+ r *Scalar
+
+ *StageCommitment
+ *StageReveal
+ Sent bool
+}
+
+type StageCommitment struct {
+ R *Point
+ X *Point
+}
+
+type StageReveal struct {
+ Y *Point
+ Z *Point
+}
+
+// Represents the proof of statements of the following form:
+//
+// [ Z=g^(xy) && X=g^x && Y=g^y && C=g^(αβ) && A=g^α && B=g^β ]
+// || [ Z=g^(xr) && X=g^x && R=g^r && C=g^(αβ+1) && A=g^α && B=g^β ]
+//
+// for given Z, X, Y, R, C, A and B
+type Stage1Proof struct {
+ Ch [2]*Scalar
+ Rho [2][2]*Scalar
+}
+
+func (b *Bit) stage(x, r *Scalar) {
+ b.Stage = &Stage{
+ x: x,
+ r: r,
+ }
+}
+
+func (s *Stage) commit() *StageCommitment {
+ if s.StageCommitment != nil {
+ return s.StageCommitment
+ }
+
+ s.StageCommitment = &StageCommitment{
+ X: G.Exp(s.x),
+ R: G.Exp(s.r),
+ }
+ return s.StageCommitment
+}
+
+func (b *Bit) StageCommit() (s *StageCommitment) {
+ if b.Stage != nil {
+ return b.Stage.StageCommitment
+ }
+ x := Curve.RandomScalar()
+ r := Curve.RandomScalar()
+ return b.StageFromScalars(x, r)
+}
+
+func (b *Bit) StageFromScalars(x, r *Scalar) (c *StageCommitment) {
+ b.stage(x, r)
+ return b.Stage.commit()
+}
+
+func (b *Bit) reveal(prev_true bool, Xs ...*Point) (r *StageReveal) {
+ s := b.Stage
+
+ // Calculate Y based on the Xs and our own X_i
+ // as Π_(i<k) X_k / Π_(i>k) X_k
+ // (basically leaving our own X_i out in the calculation).
+ // We are assuming that Xs is ordered already.
+ Y := Curve.Identity()
+ found := false
+ for _, X := range Xs {
+ if !found && X.Equal(b.Stage.X) {
+ found = true
+ continue
+ }
+ if !found {
+ Y = Y.Mul(X)
+ } else {
+ Y = Y.Div(X)
+ }
+ }
+ if !found {
+ panic("own X not found in Xs")
+ }
+
+ r = &StageReveal{Y: Y}
+
+ if prev_true && b.IsSet() {
+ r.Z = s.R.Exp(s.x)
+ s.Sent = true
+ } else {
+ r.Z = Y.Exp(s.x)
+ s.Sent = false
+ }
+
+ return r
+}
+
+func (b *Bit) RevealStage1(Xs ...*Point) (rev *StageReveal, pr *Stage1Proof) {
+ if b.Stage == nil {
+ b.StageCommit()
+ }
+ s := b.Stage
+
+ var ε [2][4]*Point
+ var r1, r2, ρ1, ρ2, ω *Scalar
+ for _, s := range []**Scalar{&r1, &r2, &ρ1, &ρ2, &ω} {
+ *s = Curve.RandomScalar()
+ }
+ c := s.commit()
+
+ rev = b.reveal(true, Xs...)
+
+ if b.IsSet() {
+ ε[0][0] = G.Exp(r1).Mul(c.X.Exp(ω))
+ ε[0][1] = G.Exp(r2).Mul(b.A.Exp(ω))
+ ε[0][2] = rev.Y.Exp(r1).Mul(rev.Z.Exp(ω))
+ ε[0][3] = b.B.Exp(r2).Mul(b.C.Exp(ω))
+ ε[1][0] = G.Exp(ρ1)
+ ε[1][1] = G.Exp(ρ2)
+ ε[1][2] = c.R.Exp(ρ1)
+ ε[1][3] = b.B.Exp(ρ2)
+ } else {
+ ε[0][0] = G.Exp(r1)
+ ε[0][1] = G.Exp(r2)
+ ε[0][2] = rev.Y.Exp(r1)
+ ε[0][3] = b.B.Exp(r2)
+ ε[1][0] = G.Exp(ρ1).Mul(c.X.Exp(ω))
+ ε[1][1] = G.Exp(ρ2).Mul(b.A.Exp(ω))
+ ε[1][2] = c.R.Exp(ρ1).Mul(rev.Z.Exp(ω))
+ ε[1][3] = b.B.Exp(ρ2).Mul(b.C.Div(G).Exp(ω))
+ }
+
+ p := []Bytes{G, b.A, b.B, b.C, c.R, c.X, rev.Y, rev.Z}
+ for _, ε := range ε[0] {
+ p = append(p, ε)
+ }
+ for _, ε := range ε[1] {
+ p = append(p, ε)
+ }
+
+ ch := Challenge(p...)
+ pr = &Stage1Proof{}
+
+ if b.IsSet() {
+ pr.Ch[0] = ω
+ pr.Ch[1] = ch.Sub(ω)
+ pr.Rho[0][0] = r1
+ pr.Rho[0][1] = r2
+ pr.Rho[1][0] = ρ1.Sub(s.x.Mul(pr.Ch[1]))
+ pr.Rho[1][1] = ρ2.Sub(b.α.Mul(pr.Ch[1]))
+ } else {
+ pr.Ch[0] = ch.Sub(ω)
+ pr.Ch[1] = ω
+ pr.Rho[0][0] = r1.Sub(s.x.Mul(pr.Ch[0]))
+ pr.Rho[0][1] = r2.Sub(b.α.Mul(pr.Ch[0]))
+ pr.Rho[1][0] = ρ1
+ pr.Rho[1][1] = ρ2
+ }
+
+ s.StageReveal = rev
+ return rev, pr
+}
+
+func (c *Commitment) VerifyStage1(sc *StageCommitment, r *StageReveal, p *Stage1Proof) bool {
+ var ε [2][4]*Point
+
+ ε[0][0] = G.Exp(p.Rho[0][0]).Mul(sc.X.Exp(p.Ch[0]))
+ ε[0][1] = G.Exp(p.Rho[0][1]).Mul(c.A.Exp(p.Ch[0]))
+ ε[0][2] = r.Y.Exp(p.Rho[0][0]).Mul(r.Z.Exp(p.Ch[0]))
+ ε[0][3] = c.B.Exp(p.Rho[0][1]).Mul(c.C.Exp(p.Ch[0]))
+ ε[1][0] = G.Exp(p.Rho[1][0]).Mul(sc.X.Exp(p.Ch[1]))
+ ε[1][1] = G.Exp(p.Rho[1][1]).Mul(c.A.Exp(p.Ch[1]))
+ ε[1][2] = sc.R.Exp(p.Rho[1][0]).Mul(r.Z.Exp(p.Ch[1]))
+ ε[1][3] = c.B.Exp(p.Rho[1][1]).Mul(c.C.Div(G).Exp(p.Ch[1]))
+
+ points := []Bytes{G, c.A, c.B, c.C, sc.R, sc.X, r.Y, r.Z}
+ for _, e := range ε[0] {
+ points = append(points, e)
+ }
+ for _, e := range ε[1] {
+ points = append(points, e)
+ }
+
+ ch := Challenge(points...)
+
+ return p.Ch[0].Add(p.Ch[1]).Equal(ch)
+}