diff options
Diffstat (limited to 'nizk/stage1/stage1.go')
-rw-r--r-- | nizk/stage1/stage1.go | 154 |
1 files changed, 154 insertions, 0 deletions
diff --git a/nizk/stage1/stage1.go b/nizk/stage1/stage1.go new file mode 100644 index 0000000..691ea74 --- /dev/null +++ b/nizk/stage1/stage1.go @@ -0,0 +1,154 @@ +package stage1 + +import ( + . "kesim.org/seal/nizk" +) + +// Implements the proof and verification of statements of the following form: +// σ == [ Z=g^(xy) ∧ X=g^x ∧ Y=g^y ∧ C=g^(αβ) ∧ A=g^α ∧ B=g^β ] +// ∨ [ Z=g^(xr) ∧ X=g^x ∧ R=g^r ∧ C=g^(αβ+1) ∧ A=g^α ∧ B=g^β ] +// for given Z, X, Y, R, C, A and B + +type Statement struct { + x *Scalar + y *Scalar + r *Scalar + α *Scalar + β *Scalar + plus bool + *Commitment +} + +type Commitment struct { + X *Point + Y *Point + Z *Point + R *Point + A *Point + B *Point + C *Point +} + +func NewStatement(x, y, r, α, β *Scalar, plus bool) *Statement { + return &Statement{ + x: x, + y: y, + r: r, + α: α, + β: β, + plus: plus, + Commitment: commitment(x, y, r, α, β, plus), + } +} + +func commitment(x, y, r, α, β *Scalar, plus bool) *Commitment { + var Z *Point + φ := α.Mul(β) + if plus { + Z = G.Exp(x.Mul(r)) + φ = φ.Add(One) + } else { + Z = G.Exp(x.Mul(y)) + } + + return &Commitment{ + Z: Z, + X: G.Exp(x), + Y: G.Exp(y), + R: G.Exp(r), + A: G.Exp(α), + B: G.Exp(β), + C: G.Exp(φ), + } +} + +func (s *Statement) Commit() *Commitment { + return s.Commitment +} + +type Proof struct { + Ch [2]*Scalar + Rho [2][2]*Scalar +} + +func (s *Statement) Proof() *Proof { + var ε [2][4]*Point + var r1, r2, ρ1, ρ2, ω *Scalar + for _, s := range []**Scalar{&r1, &r2, &ρ1, &ρ2, &ω} { + *s = Curve.RandomScalar() + } + + if s.plus { + ε[0][0] = G.Exp(r1).Mul(s.X.Exp(ω)) + ε[0][1] = G.Exp(r2).Mul(s.A.Exp(ω)) + ε[0][2] = s.Y.Exp(r1).Mul(s.Z.Exp(ω)) + ε[0][3] = s.B.Exp(r2).Mul(s.C.Exp(ω)) + ε[1][0] = G.Exp(ρ1) + ε[1][1] = G.Exp(ρ2) + ε[1][2] = s.R.Exp(ρ1) + ε[1][3] = s.B.Exp(ρ2) + } else { + ε[0][0] = G.Exp(r1) + ε[0][1] = G.Exp(r2) + ε[0][2] = s.Y.Exp(r1) + ε[0][3] = s.B.Exp(r2) + ε[1][0] = G.Exp(ρ1).Mul(s.X.Exp(ω)) + ε[1][1] = G.Exp(ρ2).Mul(s.A.Exp(ω)) + ε[1][2] = s.R.Exp(ρ1).Mul(s.Z.Exp(ω)) + ε[1][3] = s.B.Exp(ρ2).Mul(s.C.Div(G).Exp(ω)) + } + + p := []*Point{G, s.A, s.B, s.C, s.R, s.X, s.Y, s.Z} + for _, e := range ε[0] { + p = append(p, e) + } + for _, e := range ε[1] { + p = append(p, e) + } + + ch := Challenge(p...) + pr := &Proof{} + + if s.plus { + pr.Ch[0] = ω + pr.Ch[1] = ch.Sub(ω) + pr.Rho[0][0] = r1 + pr.Rho[0][1] = r2 + pr.Rho[1][0] = ρ1.Sub(s.x.Mul(pr.Ch[1])) + pr.Rho[1][1] = ρ2.Sub(s.α.Mul(pr.Ch[1])) + } else { + pr.Ch[0] = ch.Sub(ω) + pr.Ch[1] = ω + pr.Rho[0][0] = r1.Sub(s.x.Mul(pr.Ch[0])) + pr.Rho[0][1] = r2.Sub(s.α.Mul(pr.Ch[0])) + pr.Rho[1][0] = ρ1 + pr.Rho[1][1] = ρ2 + } + + return pr +} + +func (c *Commitment) Verify(p *Proof) bool { + var ε [2][4]*Point + + ε[0][0] = G.Exp(p.Rho[0][0]).Mul(c.X.Exp(p.Ch[0])) + ε[0][1] = G.Exp(p.Rho[0][1]).Mul(c.A.Exp(p.Ch[0])) + ε[0][2] = c.Y.Exp(p.Rho[0][0]).Mul(c.Z.Exp(p.Ch[0])) + ε[0][3] = c.B.Exp(p.Rho[0][1]).Mul(c.C.Exp(p.Ch[0])) + ε[1][0] = G.Exp(p.Rho[1][0]).Mul(c.X.Exp(p.Ch[1])) + ε[1][1] = G.Exp(p.Rho[1][1]).Mul(c.A.Exp(p.Ch[1])) + ε[1][2] = c.R.Exp(p.Rho[1][0]).Mul(c.Z.Exp(p.Ch[1])) + ε[1][3] = c.B.Exp(p.Rho[1][1]).Mul(c.C.Div(G).Exp(p.Ch[1])) + + points := []*Point{G, c.A, c.B, c.C, c.R, c.X, c.Y, c.Z} + for _, e := range ε[0] { + points = append(points, e) + } + for _, e := range ε[1] { + points = append(points, e) + } + + ch := Challenge(points...) + + return p.Ch[0].Add(p.Ch[1]).Equal(ch) +} |