aboutsummaryrefslogtreecommitdiff
path: root/nizk/stage1/stage1.go
diff options
context:
space:
mode:
Diffstat (limited to 'nizk/stage1/stage1.go')
-rw-r--r--nizk/stage1/stage1.go154
1 files changed, 154 insertions, 0 deletions
diff --git a/nizk/stage1/stage1.go b/nizk/stage1/stage1.go
new file mode 100644
index 0000000..691ea74
--- /dev/null
+++ b/nizk/stage1/stage1.go
@@ -0,0 +1,154 @@
+package stage1
+
+import (
+ . "kesim.org/seal/nizk"
+)
+
+// Implements the proof and verification of statements of the following form:
+// σ == [ Z=g^(xy) ∧ X=g^x ∧ Y=g^y ∧ C=g^(αβ) ∧ A=g^α ∧ B=g^β ]
+// ∨ [ Z=g^(xr) ∧ X=g^x ∧ R=g^r ∧ C=g^(αβ+1) ∧ A=g^α ∧ B=g^β ]
+// for given Z, X, Y, R, C, A and B
+
+type Statement struct {
+ x *Scalar
+ y *Scalar
+ r *Scalar
+ α *Scalar
+ β *Scalar
+ plus bool
+ *Commitment
+}
+
+type Commitment struct {
+ X *Point
+ Y *Point
+ Z *Point
+ R *Point
+ A *Point
+ B *Point
+ C *Point
+}
+
+func NewStatement(x, y, r, α, β *Scalar, plus bool) *Statement {
+ return &Statement{
+ x: x,
+ y: y,
+ r: r,
+ α: α,
+ β: β,
+ plus: plus,
+ Commitment: commitment(x, y, r, α, β, plus),
+ }
+}
+
+func commitment(x, y, r, α, β *Scalar, plus bool) *Commitment {
+ var Z *Point
+ φ := α.Mul(β)
+ if plus {
+ Z = G.Exp(x.Mul(r))
+ φ = φ.Add(One)
+ } else {
+ Z = G.Exp(x.Mul(y))
+ }
+
+ return &Commitment{
+ Z: Z,
+ X: G.Exp(x),
+ Y: G.Exp(y),
+ R: G.Exp(r),
+ A: G.Exp(α),
+ B: G.Exp(β),
+ C: G.Exp(φ),
+ }
+}
+
+func (s *Statement) Commit() *Commitment {
+ return s.Commitment
+}
+
+type Proof struct {
+ Ch [2]*Scalar
+ Rho [2][2]*Scalar
+}
+
+func (s *Statement) Proof() *Proof {
+ var ε [2][4]*Point
+ var r1, r2, ρ1, ρ2, ω *Scalar
+ for _, s := range []**Scalar{&r1, &r2, &ρ1, &ρ2, &ω} {
+ *s = Curve.RandomScalar()
+ }
+
+ if s.plus {
+ ε[0][0] = G.Exp(r1).Mul(s.X.Exp(ω))
+ ε[0][1] = G.Exp(r2).Mul(s.A.Exp(ω))
+ ε[0][2] = s.Y.Exp(r1).Mul(s.Z.Exp(ω))
+ ε[0][3] = s.B.Exp(r2).Mul(s.C.Exp(ω))
+ ε[1][0] = G.Exp(ρ1)
+ ε[1][1] = G.Exp(ρ2)
+ ε[1][2] = s.R.Exp(ρ1)
+ ε[1][3] = s.B.Exp(ρ2)
+ } else {
+ ε[0][0] = G.Exp(r1)
+ ε[0][1] = G.Exp(r2)
+ ε[0][2] = s.Y.Exp(r1)
+ ε[0][3] = s.B.Exp(r2)
+ ε[1][0] = G.Exp(ρ1).Mul(s.X.Exp(ω))
+ ε[1][1] = G.Exp(ρ2).Mul(s.A.Exp(ω))
+ ε[1][2] = s.R.Exp(ρ1).Mul(s.Z.Exp(ω))
+ ε[1][3] = s.B.Exp(ρ2).Mul(s.C.Div(G).Exp(ω))
+ }
+
+ p := []*Point{G, s.A, s.B, s.C, s.R, s.X, s.Y, s.Z}
+ for _, e := range ε[0] {
+ p = append(p, e)
+ }
+ for _, e := range ε[1] {
+ p = append(p, e)
+ }
+
+ ch := Challenge(p...)
+ pr := &Proof{}
+
+ if s.plus {
+ pr.Ch[0] = ω
+ pr.Ch[1] = ch.Sub(ω)
+ pr.Rho[0][0] = r1
+ pr.Rho[0][1] = r2
+ pr.Rho[1][0] = ρ1.Sub(s.x.Mul(pr.Ch[1]))
+ pr.Rho[1][1] = ρ2.Sub(s.α.Mul(pr.Ch[1]))
+ } else {
+ pr.Ch[0] = ch.Sub(ω)
+ pr.Ch[1] = ω
+ pr.Rho[0][0] = r1.Sub(s.x.Mul(pr.Ch[0]))
+ pr.Rho[0][1] = r2.Sub(s.α.Mul(pr.Ch[0]))
+ pr.Rho[1][0] = ρ1
+ pr.Rho[1][1] = ρ2
+ }
+
+ return pr
+}
+
+func (c *Commitment) Verify(p *Proof) bool {
+ var ε [2][4]*Point
+
+ ε[0][0] = G.Exp(p.Rho[0][0]).Mul(c.X.Exp(p.Ch[0]))
+ ε[0][1] = G.Exp(p.Rho[0][1]).Mul(c.A.Exp(p.Ch[0]))
+ ε[0][2] = c.Y.Exp(p.Rho[0][0]).Mul(c.Z.Exp(p.Ch[0]))
+ ε[0][3] = c.B.Exp(p.Rho[0][1]).Mul(c.C.Exp(p.Ch[0]))
+ ε[1][0] = G.Exp(p.Rho[1][0]).Mul(c.X.Exp(p.Ch[1]))
+ ε[1][1] = G.Exp(p.Rho[1][1]).Mul(c.A.Exp(p.Ch[1]))
+ ε[1][2] = c.R.Exp(p.Rho[1][0]).Mul(c.Z.Exp(p.Ch[1]))
+ ε[1][3] = c.B.Exp(p.Rho[1][1]).Mul(c.C.Div(G).Exp(p.Ch[1]))
+
+ points := []*Point{G, c.A, c.B, c.C, c.R, c.X, c.Y, c.Z}
+ for _, e := range ε[0] {
+ points = append(points, e)
+ }
+ for _, e := range ε[1] {
+ points = append(points, e)
+ }
+
+ ch := Challenge(points...)
+
+ return p.Ch[0].Add(p.Ch[1]).Equal(ch)
+}