aboutsummaryrefslogtreecommitdiff
path: root/nizk/stage1.go
diff options
context:
space:
mode:
authorÖzgür Kesim <oec@codeblau.de>2024-11-13 09:17:41 +0100
committerÖzgür Kesim <oec@codeblau.de>2024-11-13 09:17:41 +0100
commit024098d17146547356173b2dfa739ccc1cb2e996 (patch)
tree4f5d7f4b5aceeaee84902bcb80bf30c7d12546c8 /nizk/stage1.go
parentf5516b13fa50db2fc510584337d0641af8d21b23 (diff)
introduced step reveal for stage1, taking paramater for other bidders; simple tests pass
Diffstat (limited to 'nizk/stage1.go')
-rw-r--r--nizk/stage1.go59
1 files changed, 34 insertions, 25 deletions
diff --git a/nizk/stage1.go b/nizk/stage1.go
index 21d63c6..fe75afd 100644
--- a/nizk/stage1.go
+++ b/nizk/stage1.go
@@ -6,7 +6,9 @@ type Stage struct {
x *Scalar
r *Scalar
- com *StageCommitment
+ com *StageCommitment
+ rev *StageReveal
+
prf1 *Stage1Proof
prf2 *Stage2Proof
@@ -16,8 +18,11 @@ type Stage struct {
type StageCommitment struct {
R *Point
X *Point
- Y *Point
+}
+
+type StageReveal struct {
Z *Point
+ Y *Point
}
// Represents the proof of statements of the following form:
@@ -40,39 +45,30 @@ func (b *Bit) stage(x, r *Scalar) *Stage {
}
}
-func (b *Bit) CommitStage1(Xs ...*Point) (c *Stage, s *StageCommitment, p *Stage1Proof) {
+func (b *Bit) CommitStage1(Xs ...*Point) (c *Stage, s *StageCommitment) {
x := Curve.RandomScalar()
r := Curve.RandomScalar()
return b.CommitStage1FromScalars(x, r, Xs...)
}
-func (b *Bit) CommitStage1FromScalars(x, r *Scalar, Xs ...*Point) (s *Stage, c *StageCommitment, p *Stage1Proof) {
+func (b *Bit) CommitStage1FromScalars(x, r *Scalar, Xs ...*Point) (s *Stage, c *StageCommitment) {
s = b.stage(x, r)
- return s, s.commit(false, Xs...), s.proof1()
+ return s, s.commit(false, Xs...)
}
func (s *Stage) commit(lost bool, Xs ...*Point) *StageCommitment {
if s.com != nil {
return s.com
}
- var Y, Z *Point
- Y = G // TODO! BUG! THIS HAS TO BE Pj<i(X_j)/Pj>i(X_j)
- if !lost && s.bit.IsSet() {
- Z = G.Exp(s.x.Mul(s.r))
- } else {
- Z = Y.Exp(s.x)
- }
s.com = &StageCommitment{
- Z: Z,
X: G.Exp(s.x),
- Y: Y,
R: G.Exp(s.r),
}
return s.com
}
-func (s *Stage) proof1() *Stage1Proof {
+func (s *Stage) RevealStage1(Xs ...*Point) (rev *StageReveal, pr *Stage1Proof) {
var ε [2][4]*Point
var r1, r2, ρ1, ρ2, ω *Scalar
for _, s := range []**Scalar{&r1, &r2, &ρ1, &ρ2, &ω} {
@@ -81,10 +77,22 @@ func (s *Stage) proof1() *Stage1Proof {
c := s.commit(false)
bc := s.bit.com
+ // TODO: Calculate Y based on the Xs and our own X_i
+ // as Π_(i<k) X_k / Π_(i>k) X_k
+ // For now:
+ Y := G.Exp(Curve.RandomScalar())
+
+ rev = &StageReveal{Y: Y}
+ if s.bit.IsSet() {
+ rev.Z = c.R.Exp(s.x)
+ } else {
+ rev.Z = rev.Y.Exp(s.x)
+ }
+
if s.bit.IsSet() {
ε[0][0] = G.Exp(r1).Mul(c.X.Exp(ω))
ε[0][1] = G.Exp(r2).Mul(bc.A.Exp(ω))
- ε[0][2] = c.Y.Exp(r1).Mul(c.Z.Exp(ω))
+ ε[0][2] = rev.Y.Exp(r1).Mul(rev.Z.Exp(ω))
ε[0][3] = bc.B.Exp(r2).Mul(bc.C.Exp(ω))
ε[1][0] = G.Exp(ρ1)
ε[1][1] = G.Exp(ρ2)
@@ -93,15 +101,15 @@ func (s *Stage) proof1() *Stage1Proof {
} else {
ε[0][0] = G.Exp(r1)
ε[0][1] = G.Exp(r2)
- ε[0][2] = c.Y.Exp(r1)
+ ε[0][2] = rev.Y.Exp(r1)
ε[0][3] = bc.B.Exp(r2)
ε[1][0] = G.Exp(ρ1).Mul(c.X.Exp(ω))
ε[1][1] = G.Exp(ρ2).Mul(bc.A.Exp(ω))
- ε[1][2] = c.R.Exp(ρ1).Mul(c.Z.Exp(ω))
+ ε[1][2] = c.R.Exp(ρ1).Mul(rev.Z.Exp(ω))
ε[1][3] = bc.B.Exp(ρ2).Mul(bc.C.Div(G).Exp(ω))
}
- p := []Bytes{G, bc.A, bc.B, bc.C, c.R, c.X, c.Y, c.Z}
+ p := []Bytes{G, bc.A, bc.B, bc.C, c.R, c.X, rev.Y, rev.Z}
for _, e := range ε[0] {
p = append(p, e)
}
@@ -110,7 +118,7 @@ func (s *Stage) proof1() *Stage1Proof {
}
ch := Challenge(p...)
- pr := &Stage1Proof{}
+ pr = &Stage1Proof{}
α, _ := s.bit.Scalars()
if s.bit.IsSet() {
@@ -129,23 +137,24 @@ func (s *Stage) proof1() *Stage1Proof {
pr.Rho[1][1] = ρ2
}
+ s.rev = rev
s.prf1 = pr
- return pr
+ return rev, pr
}
-func (c *Commitment) VerifyStage1(sc *StageCommitment, p *Stage1Proof) bool {
+func (c *Commitment) VerifyStage1(sc *StageCommitment, r *StageReveal, p *Stage1Proof) bool {
var ε [2][4]*Point
ε[0][0] = G.Exp(p.Rho[0][0]).Mul(sc.X.Exp(p.Ch[0]))
ε[0][1] = G.Exp(p.Rho[0][1]).Mul(c.A.Exp(p.Ch[0]))
- ε[0][2] = sc.Y.Exp(p.Rho[0][0]).Mul(sc.Z.Exp(p.Ch[0]))
+ ε[0][2] = r.Y.Exp(p.Rho[0][0]).Mul(r.Z.Exp(p.Ch[0]))
ε[0][3] = c.B.Exp(p.Rho[0][1]).Mul(c.C.Exp(p.Ch[0]))
ε[1][0] = G.Exp(p.Rho[1][0]).Mul(sc.X.Exp(p.Ch[1]))
ε[1][1] = G.Exp(p.Rho[1][1]).Mul(c.A.Exp(p.Ch[1]))
- ε[1][2] = sc.R.Exp(p.Rho[1][0]).Mul(sc.Z.Exp(p.Ch[1]))
+ ε[1][2] = sc.R.Exp(p.Rho[1][0]).Mul(r.Z.Exp(p.Ch[1]))
ε[1][3] = c.B.Exp(p.Rho[1][1]).Mul(c.C.Div(G).Exp(p.Ch[1]))
- points := []Bytes{G, c.A, c.B, c.C, sc.R, sc.X, sc.Y, sc.Z}
+ points := []Bytes{G, c.A, c.B, c.C, sc.R, sc.X, r.Y, r.Z}
for _, e := range ε[0] {
points = append(points, e)
}