aboutsummaryrefslogtreecommitdiff
path: root/nizk/commit.go
diff options
context:
space:
mode:
authorÖzgür Kesim <oec@codeblau.de>2024-11-12 13:24:51 +0100
committerÖzgür Kesim <oec@codeblau.de>2024-11-12 13:24:51 +0100
commite71b7a107b5441e7fa05366bf866cf223c649e7a (patch)
treea85301a4f22c8834e8d7892c92b0603565df840b /nizk/commit.go
parent023e460a8729e28bb398948f3279c58e38712cb8 (diff)
refactor: make Bit and Stage1 more composable
Diffstat (limited to 'nizk/commit.go')
-rw-r--r--nizk/commit.go108
1 files changed, 67 insertions, 41 deletions
diff --git a/nizk/commit.go b/nizk/commit.go
index 5b703d9..957e4a9 100644
--- a/nizk/commit.go
+++ b/nizk/commit.go
@@ -5,71 +5,97 @@ import (
"kesim.org/seal/nizk/schnorr"
)
-// This is a construction of a proof of a statement of the form
-// [(C = g^(αβ)) && (A = g^α) && (Β = g^β)]
-// || [(C = g^(αβ+1)) && (A = g^α) && (Β = g^β)]
-//
-// for given C, A and B
-
type Bit struct {
- bitSet bool
- α *Scalar
- β *Scalar
+ id Bytes
+ bit bool
+ α *Scalar
+ β *Scalar
+
+ com *Commitment
+ prf *Proof
}
type Commitment struct {
A *Point // g^α
B *Point // g^β
- C *Point // g^(ab)g^(bitSet)
+ C *Point // g^(ab)g^(bit)
+}
+
+// This is a construction of a proof of a statement of the form
+//
+// [(C = g^(αβ)) && (A = g^α) && (Β = g^β)]
+// || [(C = g^(αβ+1)) && (A = g^α) && (Β = g^β)]
+//
+// for given C, A and B
+type Proof struct {
+ A *schnorr.Proof // Proof for knowledge of α in A = G^α
+ B *schnorr.Proof // Proof for knowledge of β in B = G^β
+ C struct { // Proof for knowledge of statement above
+ Ch [2]*Scalar
+ R [2]*Scalar
+ }
}
-func NewBit(bitSet bool) *Bit {
+func NewBit(id Bytes, bit bool) *Bit {
α, β := Curve.RandomScalar(), Curve.RandomScalar()
- return NewBitFromScalars(bitSet, α, β)
+ return NewBitFromScalars(id, bit, α, β)
}
-func NewBitFromScalars(bitSet bool, α, β *Scalar) *Bit {
+func NewBitFromScalars(id Bytes, bit bool, α, β *Scalar) *Bit {
return &Bit{
- α: α,
- β: β,
- bitSet: bitSet,
+ id: id,
+ bit: bit,
+ α: α,
+ β: β,
}
}
-func (b *Bit) commitment() *Commitment {
+func (b *Bit) IsSet() bool {
+ return b.bit
+}
+
+func (b *Bit) Id() Bytes {
+ return b.id
+}
+
+func (b *Bit) Scalars() (α *Scalar, β *Scalar) {
+ return b.α, b.β
+}
+
+func (b *Bit) commit() *Commitment {
+ if b.com != nil {
+ return b.com
+ }
+
var C *Point
c := b.α.Mul(b.β)
- if b.bitSet {
+ if b.bit {
C = G.Exp(c.Add(One))
} else {
C = G.Exp(c)
}
- return &Commitment{
+ b.com = &Commitment{
C: C,
A: G.Exp(b.α),
B: G.Exp(b.β),
}
+ return b.com
}
-type Proof struct {
- Id Bytes
- A *schnorr.Proof // Proof for knowledge of α in A = G^α
- B *schnorr.Proof // Proof for knowledge of β in B = G^β
- C struct { // Proof for knowledge of statement above
- Ch [2]*Scalar
- R [2]*Scalar
+func (s *Bit) proof() *Proof {
+ if s.prf != nil {
+ return s.prf
}
-}
-func (s *Bit) proof(id Bytes, c *Commitment) *Proof {
var e [2][2]*Point
var r1, r2, w *Scalar
r1 = Curve.RandomScalar()
r2 = Curve.RandomScalar()
w = Curve.RandomScalar()
+ c := s.commit()
- if s.bitSet {
+ if s.bit {
e[0][0] = G.Exp(r1)
e[0][1] = c.B.Exp(r1).Mul(G.Exp(w))
e[1][0] = G.Exp(r2)
@@ -81,10 +107,10 @@ func (s *Bit) proof(id Bytes, c *Commitment) *Proof {
e[1][1] = c.B.Exp(r2).Mul(c.C.Div(G).Exp(w))
}
- ch := Challenge(G, c.C, c.A, c.B, e[0][0], e[0][1], e[1][0], e[1][1], id)
- pr := &Proof{Id: id}
+ ch := Challenge(G, c.C, c.A, c.B, e[0][0], e[0][1], e[1][0], e[1][1], s.id)
+ pr := &Proof{}
- if s.bitSet {
+ if s.bit {
pr.C.Ch[0] = w
pr.C.Ch[1] = ch.Sub(w)
pr.C.R[0] = r1.Sub(s.α.Mul(pr.C.Ch[0]))
@@ -95,26 +121,26 @@ func (s *Bit) proof(id Bytes, c *Commitment) *Proof {
pr.C.R[0] = r1.Sub(s.α.Mul(pr.C.Ch[0]))
pr.C.R[1] = r2
}
- pr.A = (*schnorr.Statement)(s.α).Proof(id)
- pr.B = (*schnorr.Statement)(s.β).Proof(id)
+ pr.A = (*schnorr.Statement)(s.α).Proof(s.id)
+ pr.B = (*schnorr.Statement)(s.β).Proof(s.id)
+ s.prf = pr
return pr
}
-func (s *Bit) Commit(id Bytes) (*Commitment, *Proof) {
- c := s.commitment()
- return c, s.proof(id, c)
+func (s *Bit) Commit() (*Commitment, *Proof) {
+ return s.commit(), s.proof()
}
-func (c *Commitment) Verify(p *Proof) bool {
+func (c *Commitment) Verify(id Bytes, p *Proof) bool {
var e [2][2]*Point
e[0][0] = G.Exp(p.C.R[0]).Mul(c.A.Exp(p.C.Ch[0]))
e[0][1] = c.B.Exp(p.C.R[0]).Mul(c.C.Exp(p.C.Ch[0]))
e[1][0] = G.Exp(p.C.R[1]).Mul(c.A.Exp(p.C.Ch[1]))
e[1][1] = c.B.Exp(p.C.R[1]).Mul(c.C.Div(G).Exp(p.C.Ch[1]))
- ch := Challenge(G, c.C, c.A, c.B, e[0][0], e[0][1], e[1][0], e[1][1], p.Id)
+ ch := Challenge(G, c.C, c.A, c.B, e[0][0], e[0][1], e[1][0], e[1][1], id)
return p.C.Ch[0].Add(p.C.Ch[1]).Equal(ch) &&
- (*schnorr.Commitment)(c.A).Verify(p.A, p.Id) &&
- (*schnorr.Commitment)(c.B).Verify(p.B, p.Id)
+ (*schnorr.Commitment)(c.A).Verify(p.A, id) &&
+ (*schnorr.Commitment)(c.B).Verify(p.B, id)
}