wallet-core/packages/idb-bridge/src/tree/b+tree.ts
2021-04-27 23:42:25 +02:00

1637 lines
57 KiB
TypeScript

/*
Copyright (c) 2018 David Piepgrass
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
SPDX-License-Identifier: MIT
*/
// Original repository: https://github.com/qwertie/btree-typescript
import { ISortedMap, ISortedMapF } from "./interfaces";
export type {
ISetSource,
ISetSink,
ISet,
ISetF,
ISortedSetSource,
ISortedSet,
ISortedSetF,
IMapSource,
IMapSink,
IMap,
IMapF,
ISortedMapSource,
ISortedMap,
ISortedMapF,
} from "./interfaces";
export type EditRangeResult<V, R = number> = {
value?: V;
break?: R;
delete?: boolean;
};
type index = number;
// Informative microbenchmarks & stuff:
// http://www.jayconrod.com/posts/52/a-tour-of-v8-object-representation (very educational)
// https://blog.mozilla.org/luke/2012/10/02/optimizing-javascript-variable-access/ (local vars are faster than properties)
// http://benediktmeurer.de/2017/12/13/an-introduction-to-speculative-optimization-in-v8/ (other stuff)
// https://jsperf.com/js-in-operator-vs-alternatives (avoid 'in' operator; `.p!==undefined` faster than `hasOwnProperty('p')` in all browsers)
// https://jsperf.com/instanceof-vs-typeof-vs-constructor-vs-member (speed of type tests varies wildly across browsers)
// https://jsperf.com/detecting-arrays-new (a.constructor===Array is best across browsers, assuming a is an object)
// https://jsperf.com/shallow-cloning-methods (a constructor is faster than Object.create; hand-written clone faster than Object.assign)
// https://jsperf.com/ways-to-fill-an-array (slice-and-replace is fastest)
// https://jsperf.com/math-min-max-vs-ternary-vs-if (Math.min/max is slow on Edge)
// https://jsperf.com/array-vs-property-access-speed (v.x/v.y is faster than a[0]/a[1] in major browsers IF hidden class is constant)
// https://jsperf.com/detect-not-null-or-undefined (`x==null` slightly slower than `x===null||x===undefined` on all browsers)
// Overall, microbenchmarks suggest Firefox is the fastest browser for JavaScript and Edge is the slowest.
// Lessons from https://v8project.blogspot.com/2017/09/elements-kinds-in-v8.html:
// - Avoid holes in arrays. Avoid `new Array(N)`, it will be "holey" permanently.
// - Don't read outside bounds of an array (it scans prototype chain).
// - Small integer arrays are stored differently from doubles
// - Adding non-numbers to an array deoptimizes it permanently into a general array
// - Objects can be used like arrays (e.g. have length property) but are slower
// - V8 source (NewElementsCapacity in src/objects.h): arrays grow by 50% + 16 elements
/** Compares two numbers, strings, arrays of numbers/strings, Dates,
* or objects that have a valueOf() method returning a number or string.
* Optimized for numbers. Returns 1 if a>b, -1 if a<b, and 0 if a===b.
*/
export function defaultComparator(a: any, b: any) {
var c = a - b;
if (c === c) return c; // a & b are number
// General case (c is NaN): string / arrays / Date / incomparable things
if (a) a = a.valueOf();
if (b) b = b.valueOf();
return a < b ? -1 : a > b ? 1 : a == b ? 0 : c;
}
/**
* A reasonably fast collection of key-value pairs with a powerful API.
* Largely compatible with the standard Map. BTree is a B+ tree data structure,
* so the collection is sorted by key.
*
* B+ trees tend to use memory more efficiently than hashtables such as the
* standard Map, especially when the collection contains a large number of
* items. However, maintaining the sort order makes them modestly slower:
* O(log size) rather than O(1). This B+ tree implementation supports O(1)
* fast cloning. It also supports freeze(), which can be used to ensure that
* a BTree is not changed accidentally.
*
* Confusingly, the ES6 Map.forEach(c) method calls c(value,key) instead of
* c(key,value), in contrast to other methods such as set() and entries()
* which put the key first. I can only assume that the order was reversed on
* the theory that users would usually want to examine values and ignore keys.
* BTree's forEach() therefore works the same way, but a second method
* `.forEachPair((key,value)=>{...})` is provided which sends you the key
* first and the value second; this method is slightly faster because it is
* the "native" for-each method for this class.
*
* Out of the box, BTree supports keys that are numbers, strings, arrays of
* numbers/strings, Date, and objects that have a valueOf() method returning a
* number or string. Other data types, such as arrays of Date or custom
* objects, require a custom comparator, which you must pass as the second
* argument to the constructor (the first argument is an optional list of
* initial items). Symbols cannot be used as keys because they are unordered
* (one Symbol is never "greater" or "less" than another).
*
* @example
* Given a {name: string, age: number} object, you can create a tree sorted by
* name and then by age like this:
*
* var tree = new BTree(undefined, (a, b) => {
* if (a.name > b.name)
* return 1; // Return a number >0 when a > b
* else if (a.name < b.name)
* return -1; // Return a number <0 when a < b
* else // names are equal (or incomparable)
* return a.age - b.age; // Return >0 when a.age > b.age
* });
*
* tree.set({name:"Bill", age:17}, "happy");
* tree.set({name:"Fran", age:40}, "busy & stressed");
* tree.set({name:"Bill", age:55}, "recently laid off");
* tree.forEachPair((k, v) => {
* console.log(`Name: ${k.name} Age: ${k.age} Status: ${v}`);
* });
*
* @description
* The "range" methods (`forEach, forRange, editRange`) will return the number
* of elements that were scanned. In addition, the callback can return {break:R}
* to stop early and return R from the outer function.
*
* - TODO: Test performance of preallocating values array at max size
* - TODO: Add fast initialization when a sorted array is provided to constructor
*
* For more documentation see https://github.com/qwertie/btree-typescript
*
* Are you a C# developer? You might like the similar data structures I made for C#:
* BDictionary, BList, etc. See http://core.loyc.net/collections/
*
* @author David Piepgrass
*/
export default class BTree<K = any, V = any>
implements ISortedMapF<K, V>, ISortedMap<K, V> {
private _root: BNode<K, V> = EmptyLeaf as BNode<K, V>;
_size: number = 0;
_maxNodeSize: number;
_compare: (a: K, b: K) => number;
/**
* Initializes an empty B+ tree.
* @param compare Custom function to compare pairs of elements in the tree.
* This is not required for numbers, strings and arrays of numbers/strings.
* @param entries A set of key-value pairs to initialize the tree
* @param maxNodeSize Branching factor (maximum items or children per node)
* Must be in range 4..256. If undefined or <4 then default is used; if >256 then 256.
*/
public constructor(
entries?: [K, V][],
compare?: (a: K, b: K) => number,
maxNodeSize?: number,
) {
this._maxNodeSize = maxNodeSize! >= 4 ? Math.min(maxNodeSize!, 256) : 32;
this._compare = compare || defaultComparator;
if (entries) this.setPairs(entries);
}
// ES6 Map<K,V> methods ///////////////////////////////////////////////////
/** Gets the number of key-value pairs in the tree. */
get size() {
return this._size;
}
/** Gets the number of key-value pairs in the tree. */
get length() {
return this._size;
}
/** Returns true iff the tree contains no key-value pairs. */
get isEmpty() {
return this._size === 0;
}
/** Releases the tree so that its size is 0. */
clear() {
this._root = EmptyLeaf as BNode<K, V>;
this._size = 0;
}
forEach(
callback: (v: V, k: K, tree: BTree<K, V>) => void,
thisArg?: any,
): number;
/** Runs a function for each key-value pair, in order from smallest to
* largest key. For compatibility with ES6 Map, the argument order to
* the callback is backwards: value first, then key. Call forEachPair
* instead to receive the key as the first argument.
* @param thisArg If provided, this parameter is assigned as the `this`
* value for each callback.
* @returns the number of values that were sent to the callback,
* or the R value if the callback returned {break:R}. */
forEach<R = number>(
callback: (v: V, k: K, tree: BTree<K, V>) => { break?: R } | void,
thisArg?: any,
): R | number {
if (thisArg !== undefined) callback = callback.bind(thisArg);
return this.forEachPair((k, v) => callback(v, k, this));
}
/** Runs a function for each key-value pair, in order from smallest to
* largest key. The callback can return {break:R} (where R is any value
* except undefined) to stop immediately and return R from forEachPair.
* @param onFound A function that is called for each key-value pair. This
* function can return {break:R} to stop early with result R.
* The reason that you must return {break:R} instead of simply R
* itself is for consistency with editRange(), which allows
* multiple actions, not just breaking.
* @param initialCounter This is the value of the third argument of
* `onFound` the first time it is called. The counter increases
* by one each time `onFound` is called. Default value: 0
* @returns the number of pairs sent to the callback (plus initialCounter,
* if you provided one). If the callback returned {break:R} then
* the R value is returned instead. */
forEachPair<R = number>(
callback: (k: K, v: V, counter: number) => { break?: R } | void,
initialCounter?: number,
): R | number {
var low = this.minKey(),
high = this.maxKey();
return this.forRange(low!, high!, true, callback, initialCounter);
}
/**
* Finds a pair in the tree and returns the associated value.
* @param defaultValue a value to return if the key was not found.
* @returns the value, or defaultValue if the key was not found.
* @description Computational complexity: O(log size)
*/
get(key: K, defaultValue?: V): V | undefined {
return this._root.get(key, defaultValue, this);
}
/**
* Adds or overwrites a key-value pair in the B+ tree.
* @param key the key is used to determine the sort order of
* data in the tree.
* @param value data to associate with the key (optional)
* @param overwrite Whether to overwrite an existing key-value pair
* (default: true). If this is false and there is an existing
* key-value pair then this method has no effect.
* @returns true if a new key-value pair was added.
* @description Computational complexity: O(log size)
* Note: when overwriting a previous entry, the key is updated
* as well as the value. This has no effect unless the new key
* has data that does not affect its sort order.
*/
set(key: K, value: V, overwrite?: boolean): boolean {
if (this._root.isShared) this._root = this._root.clone();
var result = this._root.set(key, value, overwrite, this);
if (result === true || result === false) return result;
// Root node has split, so create a new root node.
this._root = new BNodeInternal<K, V>([this._root, result]);
return true;
}
/**
* Returns true if the key exists in the B+ tree, false if not.
* Use get() for best performance; use has() if you need to
* distinguish between "undefined value" and "key not present".
* @param key Key to detect
* @description Computational complexity: O(log size)
*/
has(key: K): boolean {
return this.forRange(key, key, true, undefined) !== 0;
}
/**
* Removes a single key-value pair from the B+ tree.
* @param key Key to find
* @returns true if a pair was found and removed, false otherwise.
* @description Computational complexity: O(log size)
*/
delete(key: K): boolean {
return this.editRange(key, key, true, DeleteRange) !== 0;
}
// Clone-mutators /////////////////////////////////////////////////////////
/** Returns a copy of the tree with the specified key set (the value is undefined). */
with(key: K): BTree<K, V | undefined>;
/** Returns a copy of the tree with the specified key-value pair set. */
with<V2>(key: K, value: V2, overwrite?: boolean): BTree<K, V | V2>;
with<V2>(
key: K,
value?: V2,
overwrite?: boolean,
): BTree<K, V | V2 | undefined> {
let nu = this.clone() as BTree<K, V | V2 | undefined>;
return nu.set(key, value, overwrite) || overwrite ? nu : this;
}
/** Returns a copy of the tree with the specified key-value pairs set. */
withPairs<V2>(pairs: [K, V | V2][], overwrite: boolean): BTree<K, V | V2> {
let nu = this.clone() as BTree<K, V | V2>;
return nu.setPairs(pairs, overwrite) !== 0 || overwrite ? nu : this;
}
/** Returns a copy of the tree with the specified keys present.
* @param keys The keys to add. If a key is already present in the tree,
* neither the existing key nor the existing value is modified.
* @param returnThisIfUnchanged if true, returns this if all keys already
* existed. Performance note: due to the architecture of this class, all
* node(s) leading to existing keys are cloned even if the collection is
* ultimately unchanged.
*/
withKeys(
keys: K[],
returnThisIfUnchanged?: boolean,
): BTree<K, V | undefined> {
let nu = this.clone() as BTree<K, V | undefined>,
changed = false;
for (var i = 0; i < keys.length; i++)
changed = nu.set(keys[i], undefined, false) || changed;
return returnThisIfUnchanged && !changed ? this : nu;
}
/** Returns a copy of the tree with the specified key removed.
* @param returnThisIfUnchanged if true, returns this if the key didn't exist.
* Performance note: due to the architecture of this class, node(s) leading
* to where the key would have been stored are cloned even when the key
* turns out not to exist and the collection is unchanged.
*/
without(key: K, returnThisIfUnchanged?: boolean): BTree<K, V> {
return this.withoutRange(key, key, true, returnThisIfUnchanged);
}
/** Returns a copy of the tree with the specified keys removed.
* @param returnThisIfUnchanged if true, returns this if none of the keys
* existed. Performance note: due to the architecture of this class,
* node(s) leading to where the key would have been stored are cloned
* even when the key turns out not to exist.
*/
withoutKeys(keys: K[], returnThisIfUnchanged?: boolean): BTree<K, V> {
let nu = this.clone();
return nu.deleteKeys(keys) || !returnThisIfUnchanged ? nu : this;
}
/** Returns a copy of the tree with the specified range of keys removed. */
withoutRange(
low: K,
high: K,
includeHigh: boolean,
returnThisIfUnchanged?: boolean,
): BTree<K, V> {
let nu = this.clone();
if (nu.deleteRange(low, high, includeHigh) === 0 && returnThisIfUnchanged)
return this;
return nu;
}
/** Returns a copy of the tree with pairs removed whenever the callback
* function returns false. `where()` is a synonym for this method. */
filter(
callback: (k: K, v: V, counter: number) => boolean,
returnThisIfUnchanged?: boolean,
): BTree<K, V> {
var nu = this.greedyClone();
var del: any;
nu.editAll((k, v, i) => {
if (!callback(k, v, i)) return (del = Delete);
});
if (!del && returnThisIfUnchanged) return this;
return nu;
}
/** Returns a copy of the tree with all values altered by a callback function. */
mapValues<R>(callback: (v: V, k: K, counter: number) => R): BTree<K, R> {
var tmp = {} as { value: R };
var nu = this.greedyClone();
nu.editAll((k, v, i) => {
return (tmp.value = callback(v, k, i)), tmp as any;
});
return (nu as any) as BTree<K, R>;
}
/** Performs a reduce operation like the `reduce` method of `Array`.
* It is used to combine all pairs into a single value, or perform
* conversions. `reduce` is best understood by example. For example,
* `tree.reduce((P, pair) => P * pair[0], 1)` multiplies all keys
* together. It means "start with P=1, and for each pair multiply
* it by the key in pair[0]". Another example would be converting
* the tree to a Map (in this example, note that M.set returns M):
*
* var M = tree.reduce((M, pair) => M.set(pair[0],pair[1]), new Map())
*
* **Note**: the same array is sent to the callback on every iteration.
*/
reduce<R>(
callback: (
previous: R,
currentPair: [K, V],
counter: number,
tree: BTree<K, V>,
) => R,
initialValue: R,
): R;
reduce<R>(
callback: (
previous: R | undefined,
currentPair: [K, V],
counter: number,
tree: BTree<K, V>,
) => R,
): R | undefined;
reduce<R>(
callback: (
previous: R | undefined,
currentPair: [K, V],
counter: number,
tree: BTree<K, V>,
) => R,
initialValue?: R,
): R | undefined {
let i = 0,
p = initialValue;
var it = this.entries(this.minKey(), ReusedArray),
next;
while (!(next = it.next()).done) p = callback(p, next.value, i++, this);
return p;
}
// Iterator methods ///////////////////////////////////////////////////////
/** Returns an iterator that provides items in order (ascending order if
* the collection's comparator uses ascending order, as is the default.)
* @param lowestKey First key to be iterated, or undefined to start at
* minKey(). If the specified key doesn't exist then iteration
* starts at the next higher key (according to the comparator).
* @param reusedArray Optional array used repeatedly to store key-value
* pairs, to avoid creating a new array on every iteration.
*/
entries(lowestKey?: K, reusedArray?: (K | V)[]): IterableIterator<[K, V]> {
var info = this.findPath(lowestKey);
if (info === undefined) return iterator<[K, V]>();
var { nodequeue, nodeindex, leaf } = info;
var state = reusedArray !== undefined ? 1 : 0;
var i =
lowestKey === undefined
? -1
: leaf.indexOf(lowestKey, 0, this._compare) - 1;
return iterator<[K, V]>(() => {
jump: for (;;) {
switch (state) {
case 0:
if (++i < leaf.keys.length)
return { done: false, value: [leaf.keys[i], leaf.values[i]] };
state = 2;
continue;
case 1:
if (++i < leaf.keys.length) {
(reusedArray![0] = leaf.keys[i]),
(reusedArray![1] = leaf.values[i]);
return { done: false, value: reusedArray as [K, V] };
}
state = 2;
case 2:
// Advance to the next leaf node
for (var level = -1; ; ) {
if (++level >= nodequeue.length) {
state = 3;
continue jump;
}
if (++nodeindex[level] < nodequeue[level].length) break;
}
for (; level > 0; level--) {
nodequeue[level - 1] = (nodequeue[level][
nodeindex[level]
] as BNodeInternal<K, V>).children;
nodeindex[level - 1] = 0;
}
leaf = nodequeue[0][nodeindex[0]];
i = -1;
state = reusedArray !== undefined ? 1 : 0;
continue;
case 3:
return { done: true, value: undefined };
}
}
});
}
/** Returns an iterator that provides items in reversed order.
* @param highestKey Key at which to start iterating, or undefined to
* start at minKey(). If the specified key doesn't exist then iteration
* starts at the next lower key (according to the comparator).
* @param reusedArray Optional array used repeatedly to store key-value
* pairs, to avoid creating a new array on every iteration.
* @param skipHighest Iff this flag is true and the highestKey exists in the
* collection, the pair matching highestKey is skipped, not iterated.
*/
entriesReversed(
highestKey?: K,
reusedArray?: (K | V)[],
skipHighest?: boolean,
): IterableIterator<[K, V]> {
if ((highestKey = highestKey || this.maxKey()) === undefined)
return iterator<[K, V]>(); // collection is empty
var { nodequeue, nodeindex, leaf } =
this.findPath(highestKey) || this.findPath(this.maxKey())!;
check(!nodequeue[0] || leaf === nodequeue[0][nodeindex[0]], "wat!");
var i = leaf.indexOf(highestKey, 0, this._compare);
if (!(skipHighest || this._compare(leaf.keys[i], highestKey) > 0)) i++;
var state = reusedArray !== undefined ? 1 : 0;
return iterator<[K, V]>(() => {
jump: for (;;) {
switch (state) {
case 0:
if (--i >= 0)
return { done: false, value: [leaf.keys[i], leaf.values[i]] };
state = 2;
continue;
case 1:
if (--i >= 0) {
(reusedArray![0] = leaf.keys[i]),
(reusedArray![1] = leaf.values[i]);
return { done: false, value: reusedArray as [K, V] };
}
state = 2;
case 2:
// Advance to the next leaf node
for (var level = -1; ; ) {
if (++level >= nodequeue.length) {
state = 3;
continue jump;
}
if (--nodeindex[level] >= 0) break;
}
for (; level > 0; level--) {
nodequeue[level - 1] = (nodequeue[level][
nodeindex[level]
] as BNodeInternal<K, V>).children;
nodeindex[level - 1] = nodequeue[level - 1].length - 1;
}
leaf = nodequeue[0][nodeindex[0]];
i = leaf.keys.length;
state = reusedArray !== undefined ? 1 : 0;
continue;
case 3:
return { done: true, value: undefined };
}
}
});
}
/* Used by entries() and entriesReversed() to prepare to start iterating.
* It develops a "node queue" for each non-leaf level of the tree.
* Levels are numbered "bottom-up" so that level 0 is a list of leaf
* nodes from a low-level non-leaf node. The queue at a given level L
* consists of nodequeue[L] which is the children of a BNodeInternal,
* and nodeindex[L], the current index within that child list, such
* such that nodequeue[L-1] === nodequeue[L][nodeindex[L]].children.
* (However inside this function the order is reversed.)
*/
private findPath(
key?: K,
):
| { nodequeue: BNode<K, V>[][]; nodeindex: number[]; leaf: BNode<K, V> }
| undefined {
var nextnode = this._root;
var nodequeue: BNode<K, V>[][], nodeindex: number[];
if (nextnode.isLeaf) {
(nodequeue = EmptyArray), (nodeindex = EmptyArray); // avoid allocations
} else {
(nodequeue = []), (nodeindex = []);
for (var d = 0; !nextnode.isLeaf; d++) {
nodequeue[d] = (nextnode as BNodeInternal<K, V>).children;
nodeindex[d] =
key === undefined ? 0 : nextnode.indexOf(key, 0, this._compare);
if (nodeindex[d] >= nodequeue[d].length) return; // first key > maxKey()
nextnode = nodequeue[d][nodeindex[d]];
}
nodequeue.reverse();
nodeindex.reverse();
}
return { nodequeue, nodeindex, leaf: nextnode };
}
/** Returns a new iterator for iterating the keys of each pair in ascending order.
* @param firstKey: Minimum key to include in the output. */
keys(firstKey?: K): IterableIterator<K> {
var it = this.entries(firstKey, ReusedArray);
return iterator<K>(() => {
var n: IteratorResult<any> = it.next();
if (n.value) n.value = n.value[0];
return n;
});
}
/** Returns a new iterator for iterating the values of each pair in order by key.
* @param firstKey: Minimum key whose associated value is included in the output. */
values(firstKey?: K): IterableIterator<V> {
var it = this.entries(firstKey, ReusedArray);
return iterator<V>(() => {
var n: IteratorResult<any> = it.next();
if (n.value) n.value = n.value[1];
return n;
});
}
// Additional methods /////////////////////////////////////////////////////
/** Returns the maximum number of children/values before nodes will split. */
get maxNodeSize() {
return this._maxNodeSize;
}
/** Gets the lowest key in the tree. Complexity: O(log size) */
minKey(): K | undefined {
return this._root.minKey();
}
/** Gets the highest key in the tree. Complexity: O(1) */
maxKey(): K | undefined {
return this._root.maxKey();
}
/** Quickly clones the tree by marking the root node as shared.
* Both copies remain editable. When you modify either copy, any
* nodes that are shared (or potentially shared) between the two
* copies are cloned so that the changes do not affect other copies.
* This is known as copy-on-write behavior, or "lazy copying". */
clone(): BTree<K, V> {
this._root.isShared = true;
var result = new BTree<K, V>(undefined, this._compare, this._maxNodeSize);
result._root = this._root;
result._size = this._size;
return result;
}
/** Performs a greedy clone, immediately duplicating any nodes that are
* not currently marked as shared, in order to avoid marking any nodes
* as shared.
* @param force Clone all nodes, even shared ones.
*/
greedyClone(force?: boolean): BTree<K, V> {
var result = new BTree<K, V>(undefined, this._compare, this._maxNodeSize);
result._root = this._root.greedyClone(force);
result._size = this._size;
return result;
}
/** Gets an array filled with the contents of the tree, sorted by key */
toArray(maxLength: number = 0x7fffffff): [K, V][] {
let min = this.minKey(),
max = this.maxKey();
if (min !== undefined) return this.getRange(min, max!, true, maxLength);
return [];
}
/** Gets an array of all keys, sorted */
keysArray() {
var results: K[] = [];
this._root.forRange(
this.minKey()!,
this.maxKey()!,
true,
false,
this,
0,
(k, v) => {
results.push(k);
},
);
return results;
}
/** Gets an array of all values, sorted by key */
valuesArray() {
var results: V[] = [];
this._root.forRange(
this.minKey()!,
this.maxKey()!,
true,
false,
this,
0,
(k, v) => {
results.push(v);
},
);
return results;
}
/** Gets a string representing the tree's data based on toArray(). */
toString() {
return this.toArray().toString();
}
/** Stores a key-value pair only if the key doesn't already exist in the tree.
* @returns true if a new key was added
*/
setIfNotPresent(key: K, value: V): boolean {
return this.set(key, value, false);
}
/** Returns the next pair whose key is larger than the specified key (or undefined if there is none) */
nextHigherPair(key: K): [K, V] | undefined {
var it = this.entries(key, ReusedArray);
var r = it.next();
if (!r.done && this._compare(r.value[0], key) <= 0) r = it.next();
return r.value;
}
/** Returns the next key larger than the specified key (or undefined if there is none) */
nextHigherKey(key: K): K | undefined {
var p = this.nextHigherPair(key);
return p ? p[0] : p;
}
/** Returns the next pair whose key is smaller than the specified key (or undefined if there is none) */
nextLowerPair(key: K): [K, V] | undefined {
var it = this.entriesReversed(key, ReusedArray, true);
return it.next().value;
}
/** Returns the next key smaller than the specified key (or undefined if there is none) */
nextLowerKey(key: K): K | undefined {
var p = this.nextLowerPair(key);
return p ? p[0] : p;
}
/** Edits the value associated with a key in the tree, if it already exists.
* @returns true if the key existed, false if not.
*/
changeIfPresent(key: K, value: V): boolean {
return this.editRange(key, key, true, (k, v) => ({ value })) !== 0;
}
/**
* Builds an array of pairs from the specified range of keys, sorted by key.
* Each returned pair is also an array: pair[0] is the key, pair[1] is the value.
* @param low The first key in the array will be greater than or equal to `low`.
* @param high This method returns when a key larger than this is reached.
* @param includeHigh If the `high` key is present, its pair will be included
* in the output if and only if this parameter is true. Note: if the
* `low` key is present, it is always included in the output.
* @param maxLength Length limit. getRange will stop scanning the tree when
* the array reaches this size.
* @description Computational complexity: O(result.length + log size)
*/
getRange(
low: K,
high: K,
includeHigh?: boolean,
maxLength: number = 0x3ffffff,
): [K, V][] {
var results: [K, V][] = [];
this._root.forRange(low, high, includeHigh, false, this, 0, (k, v) => {
results.push([k, v]);
return results.length > maxLength ? Break : undefined;
});
return results;
}
/** Adds all pairs from a list of key-value pairs.
* @param pairs Pairs to add to this tree. If there are duplicate keys,
* later pairs currently overwrite earlier ones (e.g. [[0,1],[0,7]]
* associates 0 with 7.)
* @param overwrite Whether to overwrite pairs that already exist (if false,
* pairs[i] is ignored when the key pairs[i][0] already exists.)
* @returns The number of pairs added to the collection.
* @description Computational complexity: O(pairs.length * log(size + pairs.length))
*/
setPairs(pairs: [K, V][], overwrite?: boolean): number {
var added = 0;
for (var i = 0; i < pairs.length; i++)
if (this.set(pairs[i][0], pairs[i][1], overwrite)) added++;
return added;
}
forRange(
low: K,
high: K,
includeHigh: boolean,
onFound?: (k: K, v: V, counter: number) => void,
initialCounter?: number,
): number;
/**
* Scans the specified range of keys, in ascending order by key.
* Note: the callback `onFound` must not insert or remove items in the
* collection. Doing so may cause incorrect data to be sent to the
* callback afterward.
* @param low The first key scanned will be greater than or equal to `low`.
* @param high Scanning stops when a key larger than this is reached.
* @param includeHigh If the `high` key is present, `onFound` is called for
* that final pair if and only if this parameter is true.
* @param onFound A function that is called for each key-value pair. This
* function can return {break:R} to stop early with result R.
* @param initialCounter Initial third argument of onFound. This value
* increases by one each time `onFound` is called. Default: 0
* @returns The number of values found, or R if the callback returned
* `{break:R}` to stop early.
* @description Computational complexity: O(number of items scanned + log size)
*/
forRange<R = number>(
low: K,
high: K,
includeHigh: boolean,
onFound?: (k: K, v: V, counter: number) => { break?: R } | void,
initialCounter?: number,
): R | number {
var r = this._root.forRange(
low,
high,
includeHigh,
false,
this,
initialCounter || 0,
onFound,
);
return typeof r === "number" ? r : r.break!;
}
/**
* Scans and potentially modifies values for a subsequence of keys.
* Note: the callback `onFound` should ideally be a pure function.
* Specifically, it must not insert items, call clone(), or change
* the collection except via return value; out-of-band editing may
* cause an exception or may cause incorrect data to be sent to
* the callback (duplicate or missed items). It must not cause a
* clone() of the collection, otherwise the clone could be modified
* by changes requested by the callback.
* @param low The first key scanned will be greater than or equal to `low`.
* @param high Scanning stops when a key larger than this is reached.
* @param includeHigh If the `high` key is present, `onFound` is called for
* that final pair if and only if this parameter is true.
* @param onFound A function that is called for each key-value pair. This
* function can return `{value:v}` to change the value associated
* with the current key, `{delete:true}` to delete the current pair,
* `{break:R}` to stop early with result R, or it can return nothing
* (undefined or {}) to cause no effect and continue iterating.
* `{break:R}` can be combined with one of the other two commands.
* The third argument `counter` is the number of items iterated
* previously; it equals 0 when `onFound` is called the first time.
* @returns The number of values scanned, or R if the callback returned
* `{break:R}` to stop early.
* @description
* Computational complexity: O(number of items scanned + log size)
* Note: if the tree has been cloned with clone(), any shared
* nodes are copied before `onFound` is called. This takes O(n) time
* where n is proportional to the amount of shared data scanned.
*/
editRange<R = V>(
low: K,
high: K,
includeHigh: boolean,
onFound: (k: K, v: V, counter: number) => EditRangeResult<V, R> | void,
initialCounter?: number,
): R | number {
var root = this._root;
if (root.isShared) this._root = root = root.clone();
try {
var r = root.forRange(
low,
high,
includeHigh,
true,
this,
initialCounter || 0,
onFound,
);
return typeof r === "number" ? r : r.break!;
} finally {
while (root.keys.length <= 1 && !root.isLeaf)
this._root = root =
root.keys.length === 0
? EmptyLeaf
: ((root as any) as BNodeInternal<K, V>).children[0];
}
}
/** Same as `editRange` except that the callback is called for all pairs. */
editAll<R = V>(
onFound: (k: K, v: V, counter: number) => EditRangeResult<V, R> | void,
initialCounter?: number,
): R | number {
return this.editRange(
this.minKey()!,
this.maxKey()!,
true,
onFound,
initialCounter,
);
}
/**
* Removes a range of key-value pairs from the B+ tree.
* @param low The first key scanned will be greater than or equal to `low`.
* @param high Scanning stops when a key larger than this is reached.
* @param includeHigh Specifies whether the `high` key, if present, is deleted.
* @returns The number of key-value pairs that were deleted.
* @description Computational complexity: O(log size + number of items deleted)
*/
deleteRange(low: K, high: K, includeHigh: boolean): number {
return this.editRange(low, high, includeHigh, DeleteRange);
}
/** Deletes a series of keys from the collection. */
deleteKeys(keys: K[]): number {
for (var i = 0, r = 0; i < keys.length; i++) if (this.delete(keys[i])) r++;
return r;
}
/** Gets the height of the tree: the number of internal nodes between the
* BTree object and its leaf nodes (zero if there are no internal nodes). */
get height(): number {
for (var node = this._root, h = -1; node != null; h++)
node = (node as any).children;
return h;
}
/** Makes the object read-only to ensure it is not accidentally modified.
* Freezing does not have to be permanent; unfreeze() reverses the effect.
* This is accomplished by replacing mutator functions with a function
* that throws an Error. Compared to using a property (e.g. this.isFrozen)
* this implementation gives better performance in non-frozen BTrees.
*/
freeze() {
var t = this as any;
// Note: all other mutators ultimately call set() or editRange()
// so we don't need to override those others.
t.clear = t.set = t.editRange = function () {
throw new Error("Attempted to modify a frozen BTree");
};
}
/** Ensures mutations are allowed, reversing the effect of freeze(). */
unfreeze() {
// @ts-ignore
delete this.clear;
// @ts-ignore
delete this.set;
// @ts-ignore
delete this.editRange;
}
/** Returns true if the tree appears to be frozen. */
get isFrozen() {
return this.hasOwnProperty("editRange");
}
/** Scans the tree for signs of serious bugs (e.g. this.size doesn't match
* number of elements, internal nodes not caching max element properly...)
* Computational complexity: O(number of nodes), i.e. O(size). This method
* skips the most expensive test - whether all keys are sorted - but it
* does check that maxKey() of the children of internal nodes are sorted. */
checkValid() {
var size = this._root.checkValid(0, this);
check(
size === this.size,
"size mismatch: counted ",
size,
"but stored",
this.size,
);
}
}
declare const Symbol: any;
if (Symbol && Symbol.iterator)
// iterator is equivalent to entries()
(BTree as any).prototype[Symbol.iterator] = BTree.prototype.entries;
(BTree as any).prototype.where = BTree.prototype.filter;
(BTree as any).prototype.setRange = BTree.prototype.setPairs;
(BTree as any).prototype.add = BTree.prototype.set;
function iterator<T>(
next: () => { done?: boolean; value?: T } = () => ({
done: true,
value: undefined,
}),
): IterableIterator<T> {
var result: any = { next };
if (Symbol && Symbol.iterator)
result[Symbol.iterator] = function () {
return this;
};
return result;
}
/** Leaf node / base class. **************************************************/
class BNode<K, V> {
// If this is an internal node, _keys[i] is the highest key in children[i].
keys: K[];
values: V[];
isShared: true | undefined;
get isLeaf() {
return (this as any).children === undefined;
}
constructor(keys: K[] = [], values?: V[]) {
this.keys = keys;
this.values = values || (undefVals as any[]);
this.isShared = undefined;
}
// Shared methods /////////////////////////////////////////////////////////
maxKey() {
return this.keys[this.keys.length - 1];
}
// If key not found, returns i^failXor where i is the insertion index.
// Callers that don't care whether there was a match will set failXor=0.
indexOf(key: K, failXor: number, cmp: (a: K, b: K) => number): index {
// TODO: benchmark multiple search strategies
const keys = this.keys;
var lo = 0,
hi = keys.length,
mid = hi >> 1;
while (lo < hi) {
var c = cmp(keys[mid], key);
if (c < 0) lo = mid + 1;
else if (c > 0)
// key < keys[mid]
hi = mid;
else if (c === 0) return mid;
else {
// c is NaN or otherwise invalid
if (key === key)
// at least the search key is not NaN
return keys.length;
else throw new Error("BTree: NaN was used as a key");
}
mid = (lo + hi) >> 1;
}
return mid ^ failXor;
// Unrolled version: benchmarks show same speed, not worth using
/*var i = 1, c: number = 0, sum = 0;
if (keys.length >= 4) {
i = 3;
if (keys.length >= 8) {
i = 7;
if (keys.length >= 16) {
i = 15;
if (keys.length >= 32) {
i = 31;
if (keys.length >= 64) {
i = 127;
i += (c = i < keys.length ? cmp(keys[i], key) : 1) < 0 ? 64 : -64;
sum += c;
i += (c = i < keys.length ? cmp(keys[i], key) : 1) < 0 ? 32 : -32;
sum += c;
}
i += (c = i < keys.length ? cmp(keys[i], key) : 1) < 0 ? 16 : -16;
sum += c;
}
i += (c = i < keys.length ? cmp(keys[i], key) : 1) < 0 ? 8 : -8;
sum += c;
}
i += (c = i < keys.length ? cmp(keys[i], key) : 1) < 0 ? 4 : -4;
sum += c;
}
i += (c = i < keys.length ? cmp(keys[i], key) : 1) < 0 ? 2 : -2;
sum += c;
}
i += (c = i < keys.length ? cmp(keys[i], key) : 1) < 0 ? 1 : -1;
c = i < keys.length ? cmp(keys[i], key) : 1;
sum += c;
if (c < 0) {
++i;
c = i < keys.length ? cmp(keys[i], key) : 1;
sum += c;
}
if (sum !== sum) {
if (key === key) // at least the search key is not NaN
return keys.length ^ failXor;
else
throw new Error("BTree: NaN was used as a key");
}
return c === 0 ? i : i ^ failXor;*/
}
// Leaf Node: misc //////////////////////////////////////////////////////////
minKey() {
return this.keys[0];
}
clone(): BNode<K, V> {
var v = this.values;
return new BNode<K, V>(
this.keys.slice(0),
v === undefVals ? v : v.slice(0),
);
}
greedyClone(force?: boolean): BNode<K, V> {
return this.isShared && !force ? this : this.clone();
}
get(key: K, defaultValue: V | undefined, tree: BTree<K, V>): V | undefined {
var i = this.indexOf(key, -1, tree._compare);
return i < 0 ? defaultValue : this.values[i];
}
checkValid(depth: number, tree: BTree<K, V>): number {
var kL = this.keys.length,
vL = this.values.length;
check(
this.values === undefVals ? kL <= vL : kL === vL,
"keys/values length mismatch: depth",
depth,
"with lengths",
kL,
vL,
);
// Note: we don't check for "node too small" because sometimes a node
// can legitimately have size 1. This occurs if there is a batch
// deletion, leaving a node of size 1, and the siblings are full so
// it can't be merged with adjacent nodes. However, the parent will
// verify that the average node size is at least half of the maximum.
check(depth == 0 || kL > 0, "empty leaf at depth", depth);
return kL;
}
// Leaf Node: set & node splitting //////////////////////////////////////////
set(
key: K,
value: V,
overwrite: boolean | undefined,
tree: BTree<K, V>,
): boolean | BNode<K, V> {
var i = this.indexOf(key, -1, tree._compare);
if (i < 0) {
// key does not exist yet
i = ~i;
tree._size++;
if (this.keys.length < tree._maxNodeSize) {
return this.insertInLeaf(i, key, value, tree);
} else {
// This leaf node is full and must split
var newRightSibling = this.splitOffRightSide(),
target: BNode<K, V> = this;
if (i > this.keys.length) {
i -= this.keys.length;
target = newRightSibling;
}
target.insertInLeaf(i, key, value, tree);
return newRightSibling;
}
} else {
// Key already exists
if (overwrite !== false) {
if (value !== undefined) this.reifyValues();
// usually this is a no-op, but some users may wish to edit the key
this.keys[i] = key;
this.values[i] = value;
}
return false;
}
}
reifyValues() {
if (this.values === undefVals)
return (this.values = this.values.slice(0, this.keys.length));
return this.values;
}
insertInLeaf(i: index, key: K, value: V, tree: BTree<K, V>) {
this.keys.splice(i, 0, key);
if (this.values === undefVals) {
while (undefVals.length < tree._maxNodeSize) undefVals.push(undefined);
if (value === undefined) {
return true;
} else {
this.values = undefVals.slice(0, this.keys.length - 1);
}
}
this.values.splice(i, 0, value);
return true;
}
takeFromRight(rhs: BNode<K, V>) {
// Reminder: parent node must update its copy of key for this node
// assert: neither node is shared
// assert rhs.keys.length > (maxNodeSize/2 && this.keys.length<maxNodeSize)
var v = this.values;
if (rhs.values === undefVals) {
if (v !== undefVals) v.push(undefined as any);
} else {
v = this.reifyValues();
v.push(rhs.values.shift()!);
}
this.keys.push(rhs.keys.shift()!);
}
takeFromLeft(lhs: BNode<K, V>) {
// Reminder: parent node must update its copy of key for this node
// assert: neither node is shared
// assert rhs.keys.length > (maxNodeSize/2 && this.keys.length<maxNodeSize)
var v = this.values;
if (lhs.values === undefVals) {
if (v !== undefVals) v.unshift(undefined as any);
} else {
v = this.reifyValues();
v.unshift(lhs.values.pop()!);
}
this.keys.unshift(lhs.keys.pop()!);
}
splitOffRightSide(): BNode<K, V> {
// Reminder: parent node must update its copy of key for this node
var half = this.keys.length >> 1,
keys = this.keys.splice(half);
var values =
this.values === undefVals ? undefVals : this.values.splice(half);
return new BNode<K, V>(keys, values);
}
// Leaf Node: scanning & deletions //////////////////////////////////////////
forRange<R>(
low: K,
high: K,
includeHigh: boolean | undefined,
editMode: boolean,
tree: BTree<K, V>,
count: number,
onFound?: (k: K, v: V, counter: number) => EditRangeResult<V, R> | void,
): EditRangeResult<V, R> | number {
var cmp = tree._compare;
var iLow, iHigh;
if (high === low) {
if (!includeHigh) return count;
iHigh = (iLow = this.indexOf(low, -1, cmp)) + 1;
if (iLow < 0) return count;
} else {
iLow = this.indexOf(low, 0, cmp);
iHigh = this.indexOf(high, -1, cmp);
if (iHigh < 0) iHigh = ~iHigh;
else if (includeHigh === true) iHigh++;
}
var keys = this.keys,
values = this.values;
if (onFound !== undefined) {
for (var i = iLow; i < iHigh; i++) {
var key = keys[i];
var result = onFound(key, values[i], count++);
if (result !== undefined) {
if (editMode === true) {
if (key !== keys[i] || this.isShared === true)
throw new Error("BTree illegally changed or cloned in editRange");
if (result.delete) {
this.keys.splice(i, 1);
if (this.values !== undefVals) this.values.splice(i, 1);
tree._size--;
i--;
iHigh--;
} else if (result.hasOwnProperty("value")) {
values![i] = result.value!;
}
}
if (result.break !== undefined) return result;
}
}
} else count += iHigh - iLow;
return count;
}
/** Adds entire contents of right-hand sibling (rhs is left unchanged) */
mergeSibling(rhs: BNode<K, V>, _: number) {
this.keys.push.apply(this.keys, rhs.keys);
if (this.values === undefVals) {
if (rhs.values === undefVals) return;
this.values = this.values.slice(0, this.keys.length);
}
this.values.push.apply(this.values, rhs.reifyValues());
}
}
/** Internal node (non-leaf node) ********************************************/
class BNodeInternal<K, V> extends BNode<K, V> {
// Note: conventionally B+ trees have one fewer key than the number of
// children, but I find it easier to keep the array lengths equal: each
// keys[i] caches the value of children[i].maxKey().
children: BNode<K, V>[];
constructor(children: BNode<K, V>[], keys?: K[]) {
if (!keys) {
keys = [];
for (var i = 0; i < children.length; i++) keys[i] = children[i].maxKey();
}
super(keys);
this.children = children;
}
clone(): BNode<K, V> {
var children = this.children.slice(0);
for (var i = 0; i < children.length; i++) children[i].isShared = true;
return new BNodeInternal<K, V>(children, this.keys.slice(0));
}
greedyClone(force?: boolean): BNode<K, V> {
if (this.isShared && !force) return this;
var nu = new BNodeInternal<K, V>(
this.children.slice(0),
this.keys.slice(0),
);
for (var i = 0; i < nu.children.length; i++)
nu.children[i] = nu.children[i].greedyClone();
return nu;
}
minKey() {
return this.children[0].minKey();
}
get(key: K, defaultValue: V | undefined, tree: BTree<K, V>): V | undefined {
var i = this.indexOf(key, 0, tree._compare),
children = this.children;
return i < children.length
? children[i].get(key, defaultValue, tree)
: undefined;
}
checkValid(depth: number, tree: BTree<K, V>): number {
var kL = this.keys.length,
cL = this.children.length;
check(
kL === cL,
"keys/children length mismatch: depth",
depth,
"lengths",
kL,
cL,
);
check(kL > 1, "internal node has length", kL, "at depth", depth);
var size = 0,
c = this.children,
k = this.keys,
childSize = 0;
for (var i = 0; i < cL; i++) {
size += c[i].checkValid(depth + 1, tree);
childSize += c[i].keys.length;
check(size >= childSize, "wtf"); // no way this will ever fail
check(
i === 0 || c[i - 1].constructor === c[i].constructor,
"type mismatch",
);
if (c[i].maxKey() != k[i])
check(
false,
"keys[",
i,
"] =",
k[i],
"is wrong, should be ",
c[i].maxKey(),
"at depth",
depth,
);
if (!(i === 0 || tree._compare(k[i - 1], k[i]) < 0))
check(
false,
"sort violation at depth",
depth,
"index",
i,
"keys",
k[i - 1],
k[i],
);
}
var toofew = childSize < (tree.maxNodeSize >> 1) * cL;
if (toofew || childSize > tree.maxNodeSize * cL)
check(
false,
toofew ? "too few" : "too many",
"children (",
childSize,
size,
") at depth",
depth,
", maxNodeSize:",
tree.maxNodeSize,
"children.length:",
cL,
);
return size;
}
// Internal Node: set & node splitting //////////////////////////////////////
set(
key: K,
value: V,
overwrite: boolean | undefined,
tree: BTree<K, V>,
): boolean | BNodeInternal<K, V> {
var c = this.children,
max = tree._maxNodeSize,
cmp = tree._compare;
var i = Math.min(this.indexOf(key, 0, cmp), c.length - 1),
child = c[i];
if (child.isShared) c[i] = child = child.clone();
if (child.keys.length >= max) {
// child is full; inserting anything else will cause a split.
// Shifting an item to the left or right sibling may avoid a split.
// We can do a shift if the adjacent node is not full and if the
// current key can still be placed in the same node after the shift.
var other: BNode<K, V>;
if (
i > 0 &&
(other = c[i - 1]).keys.length < max &&
cmp(child.keys[0], key) < 0
) {
if (other.isShared) c[i - 1] = other = other.clone();
other.takeFromRight(child);
this.keys[i - 1] = other.maxKey();
} else if (
(other = c[i + 1]) !== undefined &&
other.keys.length < max &&
cmp(child.maxKey(), key) < 0
) {
if (other.isShared) c[i + 1] = other = other.clone();
other.takeFromLeft(child);
this.keys[i] = c[i].maxKey();
}
}
var result = child.set(key, value, overwrite, tree);
if (result === false) return false;
this.keys[i] = child.maxKey();
if (result === true) return true;
// The child has split and `result` is a new right child... does it fit?
if (this.keys.length < max) {
// yes
this.insert(i + 1, result);
return true;
} else {
// no, we must split also
var newRightSibling = this.splitOffRightSide(),
target: BNodeInternal<K, V> = this;
if (cmp(result.maxKey(), this.maxKey()) > 0) {
target = newRightSibling;
i -= this.keys.length;
}
target.insert(i + 1, result);
return newRightSibling;
}
}
insert(i: index, child: BNode<K, V>) {
this.children.splice(i, 0, child);
this.keys.splice(i, 0, child.maxKey());
}
splitOffRightSide() {
var half = this.children.length >> 1;
return new BNodeInternal<K, V>(
this.children.splice(half),
this.keys.splice(half),
);
}
takeFromRight(rhs: BNode<K, V>) {
// Reminder: parent node must update its copy of key for this node
// assert: neither node is shared
// assert rhs.keys.length > (maxNodeSize/2 && this.keys.length<maxNodeSize)
this.keys.push(rhs.keys.shift()!);
this.children.push((rhs as BNodeInternal<K, V>).children.shift()!);
}
takeFromLeft(lhs: BNode<K, V>) {
// Reminder: parent node must update its copy of key for this node
// assert: neither node is shared
// assert rhs.keys.length > (maxNodeSize/2 && this.keys.length<maxNodeSize)
this.keys.unshift(lhs.keys.pop()!);
this.children.unshift((lhs as BNodeInternal<K, V>).children.pop()!);
}
// Internal Node: scanning & deletions //////////////////////////////////////
forRange<R>(
low: K,
high: K,
includeHigh: boolean | undefined,
editMode: boolean,
tree: BTree<K, V>,
count: number,
onFound?: (k: K, v: V, counter: number) => EditRangeResult<V, R> | void,
): EditRangeResult<V, R> | number {
var cmp = tree._compare;
var iLow = this.indexOf(low, 0, cmp),
i = iLow;
var iHigh = Math.min(
high === low ? iLow : this.indexOf(high, 0, cmp),
this.keys.length - 1,
);
var keys = this.keys,
children = this.children;
if (!editMode) {
// Simple case
for (; i <= iHigh; i++) {
var result = children[i].forRange(
low,
high,
includeHigh,
editMode,
tree,
count,
onFound,
);
if (typeof result !== "number") return result;
count = result;
}
} else if (i <= iHigh) {
try {
for (; i <= iHigh; i++) {
if (children[i].isShared) children[i] = children[i].clone();
var result = children[i].forRange(
low,
high,
includeHigh,
editMode,
tree,
count,
onFound,
);
keys[i] = children[i].maxKey();
if (typeof result !== "number") return result;
count = result;
}
} finally {
// Deletions may have occurred, so look for opportunities to merge nodes.
var half = tree._maxNodeSize >> 1;
if (iLow > 0) iLow--;
for (i = iHigh; i >= iLow; i--) {
if (children[i].keys.length <= half)
this.tryMerge(i, tree._maxNodeSize);
}
// Are we completely empty?
if (children[0].keys.length === 0) {
check(children.length === 1 && keys.length === 1, "emptiness bug");
children.shift();
keys.shift();
}
}
}
return count;
}
/** Merges child i with child i+1 if their combined size is not too large */
tryMerge(i: index, maxSize: number): boolean {
var children = this.children;
if (i >= 0 && i + 1 < children.length) {
if (children[i].keys.length + children[i + 1].keys.length <= maxSize) {
if (children[i].isShared)
// cloned already UNLESS i is outside scan range
children[i] = children[i].clone();
children[i].mergeSibling(children[i + 1], maxSize);
children.splice(i + 1, 1);
this.keys.splice(i + 1, 1);
this.keys[i] = children[i].maxKey();
return true;
}
}
return false;
}
mergeSibling(rhs: BNode<K, V>, maxNodeSize: number) {
// assert !this.isShared;
var oldLength = this.keys.length;
this.keys.push.apply(this.keys, rhs.keys);
this.children.push.apply(
this.children,
((rhs as any) as BNodeInternal<K, V>).children,
);
// If our children are themselves almost empty due to a mass-delete,
// they may need to be merged too (but only the oldLength-1 and its
// right sibling should need this).
this.tryMerge(oldLength - 1, maxNodeSize);
}
}
// Optimization: this array of `undefined`s is used instead of a normal
// array of values in nodes where `undefined` is the only value.
// Its length is extended to max node size on first use; since it can
// be shared between trees with different maximums, its length can only
// increase, never decrease. Its type should be undefined[] but strangely
// TypeScript won't allow the comparison V[] === undefined[]. To prevent
// users from making this array too large, BTree has a maximum node size.
var undefVals: any[] = [];
const Delete = { delete: true },
DeleteRange = () => Delete;
const Break = { break: true };
const EmptyLeaf = (function () {
var n = new BNode<any, any>();
n.isShared = true;
return n;
})();
const EmptyArray: any[] = [];
const ReusedArray: any[] = []; // assumed thread-local
function check(fact: boolean, ...args: any[]) {
if (!fact) {
args.unshift("B+ tree "); // at beginning of message
throw new Error(args.join(" "));
}
}
/** A BTree frozen in the empty state. */
export const EmptyBTree = (() => {
let t = new BTree();
t.freeze();
return t;
})();