2019-06-15 22:44:54 +02:00
|
|
|
/*
|
|
|
|
Copyright (c) 2018 David Piepgrass
|
|
|
|
|
|
|
|
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
|
|
of this software and associated documentation files (the "Software"), to deal
|
|
|
|
in the Software without restriction, including without limitation the rights
|
|
|
|
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
|
|
copies of the Software, and to permit persons to whom the Software is
|
|
|
|
furnished to do so, subject to the following conditions:
|
|
|
|
|
|
|
|
The above copyright notice and this permission notice shall be included in all
|
|
|
|
copies or substantial portions of the Software.
|
|
|
|
|
|
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
|
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
|
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
|
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
|
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
|
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
|
|
SOFTWARE.
|
|
|
|
|
|
|
|
SPDX-License-Identifier: MIT
|
|
|
|
*/
|
|
|
|
|
|
|
|
// Original repository: https://github.com/qwertie/btree-typescript
|
|
|
|
|
|
|
|
|
|
|
|
import { ISortedMap, ISortedMapF } from './interfaces';
|
|
|
|
export {
|
|
|
|
ISetSource, ISetSink, ISet, ISetF, ISortedSetSource, ISortedSet, ISortedSetF,
|
|
|
|
IMapSource, IMapSink, IMap, IMapF, ISortedMapSource, ISortedMap, ISortedMapF
|
|
|
|
} from './interfaces';
|
|
|
|
|
|
|
|
export type EditRangeResult<V,R=number> = {value?:V, break?:R, delete?:boolean};
|
|
|
|
|
|
|
|
type index = number;
|
|
|
|
|
|
|
|
// Informative microbenchmarks & stuff:
|
|
|
|
// http://www.jayconrod.com/posts/52/a-tour-of-v8-object-representation (very educational)
|
|
|
|
// https://blog.mozilla.org/luke/2012/10/02/optimizing-javascript-variable-access/ (local vars are faster than properties)
|
|
|
|
// http://benediktmeurer.de/2017/12/13/an-introduction-to-speculative-optimization-in-v8/ (other stuff)
|
|
|
|
// https://jsperf.com/js-in-operator-vs-alternatives (avoid 'in' operator; `.p!==undefined` faster than `hasOwnProperty('p')` in all browsers)
|
|
|
|
// https://jsperf.com/instanceof-vs-typeof-vs-constructor-vs-member (speed of type tests varies wildly across browsers)
|
|
|
|
// https://jsperf.com/detecting-arrays-new (a.constructor===Array is best across browsers, assuming a is an object)
|
|
|
|
// https://jsperf.com/shallow-cloning-methods (a constructor is faster than Object.create; hand-written clone faster than Object.assign)
|
|
|
|
// https://jsperf.com/ways-to-fill-an-array (slice-and-replace is fastest)
|
|
|
|
// https://jsperf.com/math-min-max-vs-ternary-vs-if (Math.min/max is slow on Edge)
|
|
|
|
// https://jsperf.com/array-vs-property-access-speed (v.x/v.y is faster than a[0]/a[1] in major browsers IF hidden class is constant)
|
|
|
|
// https://jsperf.com/detect-not-null-or-undefined (`x==null` slightly slower than `x===null||x===undefined` on all browsers)
|
|
|
|
// Overall, microbenchmarks suggest Firefox is the fastest browser for JavaScript and Edge is the slowest.
|
|
|
|
// Lessons from https://v8project.blogspot.com/2017/09/elements-kinds-in-v8.html:
|
|
|
|
// - Avoid holes in arrays. Avoid `new Array(N)`, it will be "holey" permanently.
|
|
|
|
// - Don't read outside bounds of an array (it scans prototype chain).
|
|
|
|
// - Small integer arrays are stored differently from doubles
|
|
|
|
// - Adding non-numbers to an array deoptimizes it permanently into a general array
|
|
|
|
// - Objects can be used like arrays (e.g. have length property) but are slower
|
|
|
|
// - V8 source (NewElementsCapacity in src/objects.h): arrays grow by 50% + 16 elements
|
|
|
|
|
|
|
|
/** Compares two numbers, strings, arrays of numbers/strings, Dates,
|
|
|
|
* or objects that have a valueOf() method returning a number or string.
|
|
|
|
* Optimized for numbers. Returns 1 if a>b, -1 if a<b, and 0 if a===b.
|
|
|
|
*/
|
|
|
|
export function defaultComparator(a: any, b: any) {
|
|
|
|
var c = a - b;
|
|
|
|
if (c === c) return c; // a & b are number
|
|
|
|
// General case (c is NaN): string / arrays / Date / incomparable things
|
|
|
|
if (a) a = a.valueOf();
|
|
|
|
if (b) b = b.valueOf();
|
|
|
|
return a < b ? -1 : a > b ? 1 : a == b ? 0 : c;
|
|
|
|
};
|
|
|
|
|
|
|
|
/**
|
|
|
|
* A reasonably fast collection of key-value pairs with a powerful API.
|
|
|
|
* Largely compatible with the standard Map. BTree is a B+ tree data structure,
|
|
|
|
* so the collection is sorted by key.
|
|
|
|
*
|
|
|
|
* B+ trees tend to use memory more efficiently than hashtables such as the
|
|
|
|
* standard Map, especially when the collection contains a large number of
|
|
|
|
* items. However, maintaining the sort order makes them modestly slower:
|
|
|
|
* O(log size) rather than O(1). This B+ tree implementation supports O(1)
|
|
|
|
* fast cloning. It also supports freeze(), which can be used to ensure that
|
|
|
|
* a BTree is not changed accidentally.
|
|
|
|
*
|
|
|
|
* Confusingly, the ES6 Map.forEach(c) method calls c(value,key) instead of
|
|
|
|
* c(key,value), in contrast to other methods such as set() and entries()
|
|
|
|
* which put the key first. I can only assume that the order was reversed on
|
|
|
|
* the theory that users would usually want to examine values and ignore keys.
|
|
|
|
* BTree's forEach() therefore works the same way, but a second method
|
|
|
|
* `.forEachPair((key,value)=>{...})` is provided which sends you the key
|
|
|
|
* first and the value second; this method is slightly faster because it is
|
|
|
|
* the "native" for-each method for this class.
|
|
|
|
*
|
|
|
|
* Out of the box, BTree supports keys that are numbers, strings, arrays of
|
|
|
|
* numbers/strings, Date, and objects that have a valueOf() method returning a
|
|
|
|
* number or string. Other data types, such as arrays of Date or custom
|
|
|
|
* objects, require a custom comparator, which you must pass as the second
|
|
|
|
* argument to the constructor (the first argument is an optional list of
|
|
|
|
* initial items). Symbols cannot be used as keys because they are unordered
|
|
|
|
* (one Symbol is never "greater" or "less" than another).
|
|
|
|
*
|
|
|
|
* @example
|
|
|
|
* Given a {name: string, age: number} object, you can create a tree sorted by
|
|
|
|
* name and then by age like this:
|
|
|
|
*
|
|
|
|
* var tree = new BTree(undefined, (a, b) => {
|
|
|
|
* if (a.name > b.name)
|
|
|
|
* return 1; // Return a number >0 when a > b
|
|
|
|
* else if (a.name < b.name)
|
|
|
|
* return -1; // Return a number <0 when a < b
|
|
|
|
* else // names are equal (or incomparable)
|
|
|
|
* return a.age - b.age; // Return >0 when a.age > b.age
|
|
|
|
* });
|
|
|
|
*
|
|
|
|
* tree.set({name:"Bill", age:17}, "happy");
|
|
|
|
* tree.set({name:"Fran", age:40}, "busy & stressed");
|
|
|
|
* tree.set({name:"Bill", age:55}, "recently laid off");
|
|
|
|
* tree.forEachPair((k, v) => {
|
|
|
|
* console.log(`Name: ${k.name} Age: ${k.age} Status: ${v}`);
|
|
|
|
* });
|
|
|
|
*
|
|
|
|
* @description
|
|
|
|
* The "range" methods (`forEach, forRange, editRange`) will return the number
|
|
|
|
* of elements that were scanned. In addition, the callback can return {break:R}
|
|
|
|
* to stop early and return R from the outer function.
|
|
|
|
*
|
|
|
|
* - TODO: Test performance of preallocating values array at max size
|
|
|
|
* - TODO: Add fast initialization when a sorted array is provided to constructor
|
|
|
|
*
|
|
|
|
* For more documentation see https://github.com/qwertie/btree-typescript
|
|
|
|
*
|
|
|
|
* Are you a C# developer? You might like the similar data structures I made for C#:
|
|
|
|
* BDictionary, BList, etc. See http://core.loyc.net/collections/
|
|
|
|
*
|
|
|
|
* @author David Piepgrass
|
|
|
|
*/
|
|
|
|
export default class BTree<K=any, V=any> implements ISortedMapF<K,V>, ISortedMap<K,V>
|
|
|
|
{
|
|
|
|
private _root: BNode<K, V> = EmptyLeaf as BNode<K,V>;
|
|
|
|
_size: number = 0;
|
|
|
|
_maxNodeSize: number;
|
|
|
|
_compare: (a:K, b:K) => number;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Initializes an empty B+ tree.
|
|
|
|
* @param compare Custom function to compare pairs of elements in the tree.
|
|
|
|
* This is not required for numbers, strings and arrays of numbers/strings.
|
|
|
|
* @param entries A set of key-value pairs to initialize the tree
|
|
|
|
* @param maxNodeSize Branching factor (maximum items or children per node)
|
|
|
|
* Must be in range 4..256. If undefined or <4 then default is used; if >256 then 256.
|
|
|
|
*/
|
|
|
|
public constructor(entries?: [K,V][], compare?: (a: K, b: K) => number, maxNodeSize?: number) {
|
|
|
|
this._maxNodeSize = maxNodeSize! >= 4 ? Math.min(maxNodeSize!, 256) : 32;
|
|
|
|
this._compare = compare || defaultComparator;
|
|
|
|
if (entries)
|
|
|
|
this.setPairs(entries);
|
|
|
|
}
|
|
|
|
|
|
|
|
// ES6 Map<K,V> methods ///////////////////////////////////////////////////
|
|
|
|
|
|
|
|
/** Gets the number of key-value pairs in the tree. */
|
|
|
|
get size() { return this._size; }
|
|
|
|
/** Gets the number of key-value pairs in the tree. */
|
|
|
|
get length() { return this._size; }
|
|
|
|
/** Returns true iff the tree contains no key-value pairs. */
|
|
|
|
get isEmpty() { return this._size === 0; }
|
|
|
|
|
|
|
|
/** Releases the tree so that its size is 0. */
|
|
|
|
clear() {
|
|
|
|
this._root = EmptyLeaf as BNode<K,V>;
|
|
|
|
this._size = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
forEach(callback: (v:V, k:K, tree:BTree<K,V>) => void, thisArg?: any): number;
|
|
|
|
|
|
|
|
/** Runs a function for each key-value pair, in order from smallest to
|
|
|
|
* largest key. For compatibility with ES6 Map, the argument order to
|
|
|
|
* the callback is backwards: value first, then key. Call forEachPair
|
|
|
|
* instead to receive the key as the first argument.
|
|
|
|
* @param thisArg If provided, this parameter is assigned as the `this`
|
|
|
|
* value for each callback.
|
|
|
|
* @returns the number of values that were sent to the callback,
|
|
|
|
* or the R value if the callback returned {break:R}. */
|
|
|
|
forEach<R=number>(callback: (v:V, k:K, tree:BTree<K,V>) => {break?:R}|void, thisArg?: any): R|number {
|
|
|
|
if (thisArg !== undefined)
|
|
|
|
callback = callback.bind(thisArg);
|
|
|
|
return this.forEachPair((k, v) => callback(v, k, this));
|
|
|
|
}
|
|
|
|
|
|
|
|
/** Runs a function for each key-value pair, in order from smallest to
|
|
|
|
* largest key. The callback can return {break:R} (where R is any value
|
|
|
|
* except undefined) to stop immediately and return R from forEachPair.
|
|
|
|
* @param onFound A function that is called for each key-value pair. This
|
|
|
|
* function can return {break:R} to stop early with result R.
|
|
|
|
* The reason that you must return {break:R} instead of simply R
|
|
|
|
* itself is for consistency with editRange(), which allows
|
|
|
|
* multiple actions, not just breaking.
|
|
|
|
* @param initialCounter This is the value of the third argument of
|
|
|
|
* `onFound` the first time it is called. The counter increases
|
|
|
|
* by one each time `onFound` is called. Default value: 0
|
|
|
|
* @returns the number of pairs sent to the callback (plus initialCounter,
|
|
|
|
* if you provided one). If the callback returned {break:R} then
|
|
|
|
* the R value is returned instead. */
|
|
|
|
forEachPair<R=number>(callback: (k:K, v:V, counter:number) => {break?:R}|void, initialCounter?: number): R|number {
|
|
|
|
var low = this.minKey(), high = this.maxKey();
|
|
|
|
return this.forRange(low!, high!, true, callback, initialCounter);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Finds a pair in the tree and returns the associated value.
|
|
|
|
* @param defaultValue a value to return if the key was not found.
|
|
|
|
* @returns the value, or defaultValue if the key was not found.
|
|
|
|
* @description Computational complexity: O(log size)
|
|
|
|
*/
|
|
|
|
get(key: K, defaultValue?: V): V | undefined {
|
|
|
|
return this._root.get(key, defaultValue, this);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Adds or overwrites a key-value pair in the B+ tree.
|
|
|
|
* @param key the key is used to determine the sort order of
|
|
|
|
* data in the tree.
|
|
|
|
* @param value data to associate with the key (optional)
|
|
|
|
* @param overwrite Whether to overwrite an existing key-value pair
|
|
|
|
* (default: true). If this is false and there is an existing
|
|
|
|
* key-value pair then this method has no effect.
|
|
|
|
* @returns true if a new key-value pair was added.
|
|
|
|
* @description Computational complexity: O(log size)
|
|
|
|
* Note: when overwriting a previous entry, the key is updated
|
|
|
|
* as well as the value. This has no effect unless the new key
|
|
|
|
* has data that does not affect its sort order.
|
|
|
|
*/
|
|
|
|
set(key: K, value: V, overwrite?: boolean): boolean {
|
|
|
|
if (this._root.isShared)
|
|
|
|
this._root = this._root.clone();
|
|
|
|
var result = this._root.set(key, value, overwrite, this);
|
|
|
|
if (result === true || result === false)
|
|
|
|
return result;
|
|
|
|
// Root node has split, so create a new root node.
|
|
|
|
this._root = new BNodeInternal<K,V>([this._root, result]);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Returns true if the key exists in the B+ tree, false if not.
|
|
|
|
* Use get() for best performance; use has() if you need to
|
|
|
|
* distinguish between "undefined value" and "key not present".
|
|
|
|
* @param key Key to detect
|
|
|
|
* @description Computational complexity: O(log size)
|
|
|
|
*/
|
|
|
|
has(key: K): boolean {
|
|
|
|
return this.forRange(key, key, true, undefined) !== 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Removes a single key-value pair from the B+ tree.
|
|
|
|
* @param key Key to find
|
|
|
|
* @returns true if a pair was found and removed, false otherwise.
|
|
|
|
* @description Computational complexity: O(log size)
|
|
|
|
*/
|
|
|
|
delete(key: K): boolean {
|
|
|
|
return this.editRange(key, key, true, DeleteRange) !== 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Clone-mutators /////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
/** Returns a copy of the tree with the specified key set (the value is undefined). */
|
|
|
|
with(key: K): BTree<K,V|undefined>;
|
|
|
|
/** Returns a copy of the tree with the specified key-value pair set. */
|
|
|
|
with<V2>(key: K, value: V2, overwrite?: boolean): BTree<K,V|V2>;
|
|
|
|
with<V2>(key: K, value?: V2, overwrite?: boolean): BTree<K,V|V2|undefined> {
|
|
|
|
let nu = this.clone() as BTree<K,V|V2|undefined>;
|
|
|
|
return nu.set(key, value, overwrite) || overwrite ? nu : this;
|
|
|
|
}
|
|
|
|
|
|
|
|
/** Returns a copy of the tree with the specified key-value pairs set. */
|
|
|
|
withPairs<V2>(pairs: [K,V|V2][], overwrite: boolean): BTree<K,V|V2> {
|
|
|
|
let nu = this.clone() as BTree<K,V|V2>;
|
|
|
|
return nu.setPairs(pairs, overwrite) !== 0 || overwrite ? nu : this;
|
|
|
|
}
|
|
|
|
|
|
|
|
/** Returns a copy of the tree with the specified keys present.
|
|
|
|
* @param keys The keys to add. If a key is already present in the tree,
|
|
|
|
* neither the existing key nor the existing value is modified.
|
|
|
|
* @param returnThisIfUnchanged if true, returns this if all keys already
|
|
|
|
* existed. Performance note: due to the architecture of this class, all
|
|
|
|
* node(s) leading to existing keys are cloned even if the collection is
|
|
|
|
* ultimately unchanged.
|
|
|
|
*/
|
|
|
|
withKeys(keys: K[], returnThisIfUnchanged?: boolean): BTree<K,V|undefined> {
|
|
|
|
let nu = this.clone() as BTree<K,V|undefined>, changed = false;
|
|
|
|
for (var i = 0; i < keys.length; i++)
|
|
|
|
changed = nu.set(keys[i], undefined, false) || changed;
|
|
|
|
return returnThisIfUnchanged && !changed ? this : nu;
|
|
|
|
}
|
|
|
|
|
|
|
|
/** Returns a copy of the tree with the specified key removed.
|
|
|
|
* @param returnThisIfUnchanged if true, returns this if the key didn't exist.
|
|
|
|
* Performance note: due to the architecture of this class, node(s) leading
|
|
|
|
* to where the key would have been stored are cloned even when the key
|
|
|
|
* turns out not to exist and the collection is unchanged.
|
|
|
|
*/
|
|
|
|
without(key: K, returnThisIfUnchanged?: boolean): BTree<K,V> {
|
|
|
|
return this.withoutRange(key, key, true, returnThisIfUnchanged);
|
|
|
|
}
|
|
|
|
|
|
|
|
/** Returns a copy of the tree with the specified keys removed.
|
|
|
|
* @param returnThisIfUnchanged if true, returns this if none of the keys
|
|
|
|
* existed. Performance note: due to the architecture of this class,
|
|
|
|
* node(s) leading to where the key would have been stored are cloned
|
|
|
|
* even when the key turns out not to exist.
|
|
|
|
*/
|
|
|
|
withoutKeys(keys: K[], returnThisIfUnchanged?: boolean): BTree<K,V> {
|
|
|
|
let nu = this.clone();
|
|
|
|
return nu.deleteKeys(keys) || !returnThisIfUnchanged ? nu : this;
|
|
|
|
}
|
|
|
|
|
|
|
|
/** Returns a copy of the tree with the specified range of keys removed. */
|
|
|
|
withoutRange(low: K, high: K, includeHigh: boolean, returnThisIfUnchanged?: boolean): BTree<K,V> {
|
|
|
|
let nu = this.clone();
|
|
|
|
if (nu.deleteRange(low, high, includeHigh) === 0 && returnThisIfUnchanged)
|
|
|
|
return this;
|
|
|
|
return nu;
|
|
|
|
}
|
|
|
|
|
|
|
|
/** Returns a copy of the tree with pairs removed whenever the callback
|
|
|
|
* function returns false. `where()` is a synonym for this method. */
|
|
|
|
filter(callback: (k:K,v:V,counter:number) => boolean, returnThisIfUnchanged?: boolean): BTree<K,V> {
|
|
|
|
var nu = this.greedyClone();
|
|
|
|
var del: any;
|
|
|
|
nu.editAll((k,v,i) => {
|
|
|
|
if (!callback(k, v, i)) return del = Delete;
|
|
|
|
});
|
|
|
|
if (!del && returnThisIfUnchanged)
|
|
|
|
return this;
|
|
|
|
return nu;
|
|
|
|
}
|
|
|
|
|
|
|
|
/** Returns a copy of the tree with all values altered by a callback function. */
|
|
|
|
mapValues<R>(callback: (v:V,k:K,counter:number) => R): BTree<K,R> {
|
|
|
|
var tmp = {} as {value:R};
|
|
|
|
var nu = this.greedyClone();
|
|
|
|
nu.editAll((k,v,i) => {
|
|
|
|
return tmp.value = callback(v, k, i), tmp as any;
|
|
|
|
});
|
|
|
|
return nu as any as BTree<K,R>;
|
|
|
|
}
|
|
|
|
|
|
|
|
/** Performs a reduce operation like the `reduce` method of `Array`.
|
|
|
|
* It is used to combine all pairs into a single value, or perform
|
|
|
|
* conversions. `reduce` is best understood by example. For example,
|
|
|
|
* `tree.reduce((P, pair) => P * pair[0], 1)` multiplies all keys
|
|
|
|
* together. It means "start with P=1, and for each pair multiply
|
|
|
|
* it by the key in pair[0]". Another example would be converting
|
|
|
|
* the tree to a Map (in this example, note that M.set returns M):
|
|
|
|
*
|
|
|
|
* var M = tree.reduce((M, pair) => M.set(pair[0],pair[1]), new Map())
|
|
|
|
*
|
|
|
|
* **Note**: the same array is sent to the callback on every iteration.
|
|
|
|
*/
|
|
|
|
reduce<R>(callback: (previous:R,currentPair:[K,V],counter:number,tree:BTree<K,V>) => R, initialValue: R): R;
|
|
|
|
reduce<R>(callback: (previous:R|undefined,currentPair:[K,V],counter:number,tree:BTree<K,V>) => R): R|undefined;
|
|
|
|
reduce<R>(callback: (previous:R|undefined,currentPair:[K,V],counter:number,tree:BTree<K,V>) => R, initialValue?: R): R|undefined {
|
|
|
|
let i = 0, p = initialValue;
|
|
|
|
var it = this.entries(this.minKey(), ReusedArray), next;
|
|
|
|
while (!(next = it.next()).done)
|
|
|
|
p = callback(p, next.value, i++, this);
|
|
|
|
return p;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Iterator methods ///////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
/** Returns an iterator that provides items in order (ascending order if
|
|
|
|
* the collection's comparator uses ascending order, as is the default.)
|
|
|
|
* @param lowestKey First key to be iterated, or undefined to start at
|
|
|
|
* minKey(). If the specified key doesn't exist then iteration
|
|
|
|
* starts at the next higher key (according to the comparator).
|
|
|
|
* @param reusedArray Optional array used repeatedly to store key-value
|
|
|
|
* pairs, to avoid creating a new array on every iteration.
|
|
|
|
*/
|
|
|
|
entries(lowestKey?: K, reusedArray?: (K|V)[]): IterableIterator<[K,V]> {
|
|
|
|
var info = this.findPath(lowestKey);
|
|
|
|
if (info === undefined) return iterator<[K,V]>();
|
|
|
|
var {nodequeue, nodeindex, leaf} = info;
|
|
|
|
var state = reusedArray !== undefined ? 1 : 0;
|
|
|
|
var i = (lowestKey === undefined ? -1 : leaf.indexOf(lowestKey, 0, this._compare) - 1);
|
|
|
|
|
|
|
|
return iterator<[K,V]>(() => {
|
|
|
|
jump: for (;;) {
|
|
|
|
switch(state) {
|
|
|
|
case 0:
|
|
|
|
if (++i < leaf.keys.length)
|
|
|
|
return {done: false, value: [leaf.keys[i], leaf.values[i]]};
|
|
|
|
state = 2;
|
|
|
|
continue;
|
|
|
|
case 1:
|
|
|
|
if (++i < leaf.keys.length) {
|
|
|
|
reusedArray![0] = leaf.keys[i], reusedArray![1] = leaf.values[i];
|
|
|
|
return {done: false, value: reusedArray as [K,V]};
|
|
|
|
}
|
|
|
|
state = 2;
|
|
|
|
case 2:
|
|
|
|
// Advance to the next leaf node
|
|
|
|
for (var level = -1;;) {
|
|
|
|
if (++level >= nodequeue.length) {
|
|
|
|
state = 3; continue jump;
|
|
|
|
}
|
|
|
|
if (++nodeindex[level] < nodequeue[level].length)
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
for (; level > 0; level--) {
|
|
|
|
nodequeue[level-1] = (nodequeue[level][nodeindex[level]] as BNodeInternal<K,V>).children;
|
|
|
|
nodeindex[level-1] = 0;
|
|
|
|
}
|
|
|
|
leaf = nodequeue[0][nodeindex[0]];
|
|
|
|
i = -1;
|
|
|
|
state = reusedArray !== undefined ? 1 : 0;
|
|
|
|
continue;
|
|
|
|
case 3:
|
|
|
|
return {done: true, value: undefined};
|
|
|
|
}
|
|
|
|
}
|
|
|
|
});
|
|
|
|
}
|
|
|
|
|
|
|
|
/** Returns an iterator that provides items in reversed order.
|
|
|
|
* @param highestKey Key at which to start iterating, or undefined to
|
|
|
|
* start at minKey(). If the specified key doesn't exist then iteration
|
|
|
|
* starts at the next lower key (according to the comparator).
|
|
|
|
* @param reusedArray Optional array used repeatedly to store key-value
|
|
|
|
* pairs, to avoid creating a new array on every iteration.
|
|
|
|
* @param skipHighest Iff this flag is true and the highestKey exists in the
|
|
|
|
* collection, the pair matching highestKey is skipped, not iterated.
|
|
|
|
*/
|
|
|
|
entriesReversed(highestKey?: K, reusedArray?: (K|V)[], skipHighest?: boolean): IterableIterator<[K,V]> {
|
|
|
|
if ((highestKey = highestKey || this.maxKey()) === undefined)
|
|
|
|
return iterator<[K,V]>(); // collection is empty
|
|
|
|
var {nodequeue,nodeindex,leaf} = this.findPath(highestKey) || this.findPath(this.maxKey())!;
|
|
|
|
check(!nodequeue[0] || leaf === nodequeue[0][nodeindex[0]], "wat!");
|
|
|
|
var i = leaf.indexOf(highestKey, 0, this._compare);
|
|
|
|
if (!(skipHighest || this._compare(leaf.keys[i], highestKey) > 0))
|
|
|
|
i++;
|
|
|
|
var state = reusedArray !== undefined ? 1 : 0;
|
|
|
|
|
|
|
|
return iterator<[K,V]>(() => {
|
|
|
|
jump: for (;;) {
|
|
|
|
switch(state) {
|
|
|
|
case 0:
|
|
|
|
if (--i >= 0)
|
|
|
|
return {done: false, value: [leaf.keys[i], leaf.values[i]]};
|
|
|
|
state = 2;
|
|
|
|
continue;
|
|
|
|
case 1:
|
|
|
|
if (--i >= 0) {
|
|
|
|
reusedArray![0] = leaf.keys[i], reusedArray![1] = leaf.values[i];
|
|
|
|
return {done: false, value: reusedArray as [K,V]};
|
|
|
|
}
|
|
|
|
state = 2;
|
|
|
|
case 2:
|
|
|
|
// Advance to the next leaf node
|
|
|
|
for (var level = -1;;) {
|
|
|
|
if (++level >= nodequeue.length) {
|
|
|
|
state = 3; continue jump;
|
|
|
|
}
|
|
|
|
if (--nodeindex[level] >= 0)
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
for (; level > 0; level--) {
|
|
|
|
nodequeue[level-1] = (nodequeue[level][nodeindex[level]] as BNodeInternal<K,V>).children;
|
|
|
|
nodeindex[level-1] = nodequeue[level-1].length-1;
|
|
|
|
}
|
|
|
|
leaf = nodequeue[0][nodeindex[0]];
|
|
|
|
i = leaf.keys.length;
|
|
|
|
state = reusedArray !== undefined ? 1 : 0;
|
|
|
|
continue;
|
|
|
|
case 3:
|
|
|
|
return {done: true, value: undefined};
|
|
|
|
}
|
|
|
|
}
|
|
|
|
});
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Used by entries() and entriesReversed() to prepare to start iterating.
|
|
|
|
* It develops a "node queue" for each non-leaf level of the tree.
|
|
|
|
* Levels are numbered "bottom-up" so that level 0 is a list of leaf
|
|
|
|
* nodes from a low-level non-leaf node. The queue at a given level L
|
|
|
|
* consists of nodequeue[L] which is the children of a BNodeInternal,
|
|
|
|
* and nodeindex[L], the current index within that child list, such
|
|
|
|
* such that nodequeue[L-1] === nodequeue[L][nodeindex[L]].children.
|
|
|
|
* (However inside this function the order is reversed.)
|
|
|
|
*/
|
|
|
|
private findPath(key?: K): { nodequeue: BNode<K,V>[][], nodeindex: number[], leaf: BNode<K,V> } | undefined
|
|
|
|
{
|
|
|
|
var nextnode = this._root;
|
|
|
|
var nodequeue: BNode<K,V>[][], nodeindex: number[];
|
|
|
|
|
|
|
|
if (nextnode.isLeaf) {
|
|
|
|
nodequeue = EmptyArray, nodeindex = EmptyArray; // avoid allocations
|
|
|
|
} else {
|
|
|
|
nodequeue = [], nodeindex = [];
|
|
|
|
for (var d = 0; !nextnode.isLeaf; d++) {
|
|
|
|
nodequeue[d] = (nextnode as BNodeInternal<K,V>).children;
|
|
|
|
nodeindex[d] = key === undefined ? 0 : nextnode.indexOf(key, 0, this._compare);
|
|
|
|
if (nodeindex[d] >= nodequeue[d].length)
|
|
|
|
return; // first key > maxKey()
|
|
|
|
nextnode = nodequeue[d][nodeindex[d]];
|
|
|
|
}
|
|
|
|
nodequeue.reverse();
|
|
|
|
nodeindex.reverse();
|
|
|
|
}
|
|
|
|
return {nodequeue, nodeindex, leaf:nextnode};
|
|
|
|
}
|
|
|
|
|
|
|
|
/** Returns a new iterator for iterating the keys of each pair in ascending order.
|
|
|
|
* @param firstKey: Minimum key to include in the output. */
|
|
|
|
keys(firstKey?: K): IterableIterator<K> {
|
|
|
|
var it = this.entries(firstKey, ReusedArray);
|
|
|
|
return iterator<K>(() => {
|
|
|
|
var n: IteratorResult<any> = it.next();
|
|
|
|
if (n.value) n.value = n.value[0];
|
|
|
|
return n;
|
|
|
|
});
|
|
|
|
}
|
|
|
|
|
|
|
|
/** Returns a new iterator for iterating the values of each pair in order by key.
|
|
|
|
* @param firstKey: Minimum key whose associated value is included in the output. */
|
|
|
|
values(firstKey?: K): IterableIterator<V> {
|
|
|
|
var it = this.entries(firstKey, ReusedArray);
|
|
|
|
return iterator<V>(() => {
|
|
|
|
var n: IteratorResult<any> = it.next();
|
|
|
|
if (n.value) n.value = n.value[1];
|
|
|
|
return n;
|
|
|
|
});
|
|
|
|
}
|
|
|
|
|
|
|
|
// Additional methods /////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
/** Returns the maximum number of children/values before nodes will split. */
|
|
|
|
get maxNodeSize() {
|
|
|
|
return this._maxNodeSize;
|
|
|
|
}
|
|
|
|
|
|
|
|
/** Gets the lowest key in the tree. Complexity: O(log size) */
|
|
|
|
minKey(): K | undefined { return this._root.minKey(); }
|
|
|
|
|
|
|
|
/** Gets the highest key in the tree. Complexity: O(1) */
|
|
|
|
maxKey(): K | undefined { return this._root.maxKey(); }
|
|
|
|
|
|
|
|
/** Quickly clones the tree by marking the root node as shared.
|
|
|
|
* Both copies remain editable. When you modify either copy, any
|
|
|
|
* nodes that are shared (or potentially shared) between the two
|
|
|
|
* copies are cloned so that the changes do not affect other copies.
|
|
|
|
* This is known as copy-on-write behavior, or "lazy copying". */
|
|
|
|
clone(): BTree<K,V> {
|
|
|
|
this._root.isShared = true;
|
|
|
|
var result = new BTree<K,V>(undefined, this._compare, this._maxNodeSize);
|
|
|
|
result._root = this._root;
|
|
|
|
result._size = this._size;
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
/** Performs a greedy clone, immediately duplicating any nodes that are
|
|
|
|
* not currently marked as shared, in order to avoid marking any nodes
|
|
|
|
* as shared.
|
|
|
|
* @param force Clone all nodes, even shared ones.
|
|
|
|
*/
|
|
|
|
greedyClone(force?: boolean): BTree<K,V> {
|
|
|
|
var result = new BTree<K,V>(undefined, this._compare, this._maxNodeSize);
|
|
|
|
result._root = this._root.greedyClone(force);
|
|
|
|
result._size = this._size;
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
/** Gets an array filled with the contents of the tree, sorted by key */
|
|
|
|
toArray(maxLength: number = 0x7FFFFFFF): [K,V][] {
|
|
|
|
let min = this.minKey(), max = this.maxKey();
|
|
|
|
if (min !== undefined)
|
|
|
|
return this.getRange(min, max!, true, maxLength)
|
|
|
|
return [];
|
|
|
|
}
|
|
|
|
|
|
|
|
/** Gets an array of all keys, sorted */
|
|
|
|
keysArray() {
|
|
|
|
var results: K[] = [];
|
|
|
|
this._root.forRange(this.minKey()!, this.maxKey()!, true, false, this, 0,
|
|
|
|
(k,v) => { results.push(k); });
|
|
|
|
return results;
|
|
|
|
}
|
|
|
|
|
|
|
|
/** Gets an array of all values, sorted by key */
|
|
|
|
valuesArray() {
|
|
|
|
var results: V[] = [];
|
|
|
|
this._root.forRange(this.minKey()!, this.maxKey()!, true, false, this, 0,
|
|
|
|
(k,v) => { results.push(v); });
|
|
|
|
return results;
|
|
|
|
}
|
|
|
|
|
|
|
|
/** Gets a string representing the tree's data based on toArray(). */
|
|
|
|
toString() {
|
|
|
|
return this.toArray().toString();
|
|
|
|
}
|
|
|
|
|
|
|
|
/** Stores a key-value pair only if the key doesn't already exist in the tree.
|
|
|
|
* @returns true if a new key was added
|
|
|
|
*/
|
|
|
|
setIfNotPresent(key: K, value: V): boolean {
|
|
|
|
return this.set(key, value, false);
|
|
|
|
}
|
|
|
|
|
|
|
|
/** Returns the next pair whose key is larger than the specified key (or undefined if there is none) */
|
|
|
|
nextHigherPair(key: K): [K,V]|undefined {
|
|
|
|
var it = this.entries(key, ReusedArray);
|
|
|
|
var r = it.next();
|
|
|
|
if (!r.done && this._compare(r.value[0], key) <= 0)
|
|
|
|
r = it.next();
|
|
|
|
return r.value;
|
|
|
|
}
|
|
|
|
|
|
|
|
/** Returns the next key larger than the specified key (or undefined if there is none) */
|
|
|
|
nextHigherKey(key: K): K|undefined {
|
|
|
|
var p = this.nextHigherPair(key);
|
|
|
|
return p ? p[0] : p;
|
|
|
|
}
|
|
|
|
|
|
|
|
/** Returns the next pair whose key is smaller than the specified key (or undefined if there is none) */
|
|
|
|
nextLowerPair(key: K): [K,V]|undefined {
|
|
|
|
var it = this.entriesReversed(key, ReusedArray, true);
|
|
|
|
return it.next().value;
|
|
|
|
}
|
|
|
|
|
|
|
|
/** Returns the next key smaller than the specified key (or undefined if there is none) */
|
|
|
|
nextLowerKey(key: K): K|undefined {
|
|
|
|
var p = this.nextLowerPair(key);
|
|
|
|
return p ? p[0] : p;
|
|
|
|
}
|
|
|
|
|
|
|
|
/** Edits the value associated with a key in the tree, if it already exists.
|
|
|
|
* @returns true if the key existed, false if not.
|
|
|
|
*/
|
|
|
|
changeIfPresent(key: K, value: V): boolean {
|
|
|
|
return this.editRange(key, key, true, (k,v) => ({value})) !== 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Builds an array of pairs from the specified range of keys, sorted by key.
|
|
|
|
* Each returned pair is also an array: pair[0] is the key, pair[1] is the value.
|
|
|
|
* @param low The first key in the array will be greater than or equal to `low`.
|
|
|
|
* @param high This method returns when a key larger than this is reached.
|
|
|
|
* @param includeHigh If the `high` key is present, its pair will be included
|
|
|
|
* in the output if and only if this parameter is true. Note: if the
|
|
|
|
* `low` key is present, it is always included in the output.
|
|
|
|
* @param maxLength Length limit. getRange will stop scanning the tree when
|
|
|
|
* the array reaches this size.
|
|
|
|
* @description Computational complexity: O(result.length + log size)
|
|
|
|
*/
|
|
|
|
getRange(low: K, high: K, includeHigh?: boolean, maxLength: number = 0x3FFFFFF): [K,V][] {
|
|
|
|
var results: [K,V][] = [];
|
|
|
|
this._root.forRange(low, high, includeHigh, false, this, 0, (k,v) => {
|
|
|
|
results.push([k,v])
|
|
|
|
return results.length > maxLength ? Break : undefined;
|
|
|
|
});
|
|
|
|
return results;
|
|
|
|
}
|
|
|
|
|
|
|
|
/** Adds all pairs from a list of key-value pairs.
|
|
|
|
* @param pairs Pairs to add to this tree. If there are duplicate keys,
|
|
|
|
* later pairs currently overwrite earlier ones (e.g. [[0,1],[0,7]]
|
|
|
|
* associates 0 with 7.)
|
|
|
|
* @param overwrite Whether to overwrite pairs that already exist (if false,
|
|
|
|
* pairs[i] is ignored when the key pairs[i][0] already exists.)
|
|
|
|
* @returns The number of pairs added to the collection.
|
|
|
|
* @description Computational complexity: O(pairs.length * log(size + pairs.length))
|
|
|
|
*/
|
|
|
|
setPairs(pairs: [K,V][], overwrite?: boolean): number {
|
|
|
|
var added = 0;
|
|
|
|
for (var i = 0; i < pairs.length; i++)
|
|
|
|
if (this.set(pairs[i][0], pairs[i][1], overwrite))
|
|
|
|
added++;
|
|
|
|
return added;
|
|
|
|
}
|
|
|
|
|
|
|
|
forRange(low: K, high: K, includeHigh: boolean, onFound?: (k:K,v:V,counter:number) => void, initialCounter?: number): number;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Scans the specified range of keys, in ascending order by key.
|
|
|
|
* Note: the callback `onFound` must not insert or remove items in the
|
|
|
|
* collection. Doing so may cause incorrect data to be sent to the
|
|
|
|
* callback afterward.
|
|
|
|
* @param low The first key scanned will be greater than or equal to `low`.
|
|
|
|
* @param high Scanning stops when a key larger than this is reached.
|
|
|
|
* @param includeHigh If the `high` key is present, `onFound` is called for
|
|
|
|
* that final pair if and only if this parameter is true.
|
|
|
|
* @param onFound A function that is called for each key-value pair. This
|
|
|
|
* function can return {break:R} to stop early with result R.
|
|
|
|
* @param initialCounter Initial third argument of onFound. This value
|
|
|
|
* increases by one each time `onFound` is called. Default: 0
|
|
|
|
* @returns The number of values found, or R if the callback returned
|
|
|
|
* `{break:R}` to stop early.
|
|
|
|
* @description Computational complexity: O(number of items scanned + log size)
|
|
|
|
*/
|
|
|
|
forRange<R=number>(low: K, high: K, includeHigh: boolean, onFound?: (k:K,v:V,counter:number) => {break?:R}|void, initialCounter?: number): R|number {
|
|
|
|
var r = this._root.forRange(low, high, includeHigh, false, this, initialCounter || 0, onFound);
|
|
|
|
return typeof r === "number" ? r : r.break!;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Scans and potentially modifies values for a subsequence of keys.
|
|
|
|
* Note: the callback `onFound` should ideally be a pure function.
|
|
|
|
* Specfically, it must not insert items, call clone(), or change
|
|
|
|
* the collection except via return value; out-of-band editing may
|
|
|
|
* cause an exception or may cause incorrect data to be sent to
|
|
|
|
* the callback (duplicate or missed items). It must not cause a
|
|
|
|
* clone() of the collection, otherwise the clone could be modified
|
|
|
|
* by changes requested by the callback.
|
|
|
|
* @param low The first key scanned will be greater than or equal to `low`.
|
|
|
|
* @param high Scanning stops when a key larger than this is reached.
|
|
|
|
* @param includeHigh If the `high` key is present, `onFound` is called for
|
|
|
|
* that final pair if and only if this parameter is true.
|
|
|
|
* @param onFound A function that is called for each key-value pair. This
|
|
|
|
* function can return `{value:v}` to change the value associated
|
|
|
|
* with the current key, `{delete:true}` to delete the current pair,
|
|
|
|
* `{break:R}` to stop early with result R, or it can return nothing
|
|
|
|
* (undefined or {}) to cause no effect and continue iterating.
|
|
|
|
* `{break:R}` can be combined with one of the other two commands.
|
|
|
|
* The third argument `counter` is the number of items iterated
|
|
|
|
* previously; it equals 0 when `onFound` is called the first time.
|
|
|
|
* @returns The number of values scanned, or R if the callback returned
|
|
|
|
* `{break:R}` to stop early.
|
|
|
|
* @description
|
|
|
|
* Computational complexity: O(number of items scanned + log size)
|
|
|
|
* Note: if the tree has been cloned with clone(), any shared
|
|
|
|
* nodes are copied before `onFound` is called. This takes O(n) time
|
|
|
|
* where n is proportional to the amount of shared data scanned.
|
|
|
|
*/
|
|
|
|
editRange<R=V>(low: K, high: K, includeHigh: boolean, onFound: (k:K,v:V,counter:number) => EditRangeResult<V,R>|void, initialCounter?: number): R|number {
|
|
|
|
var root = this._root;
|
|
|
|
if (root.isShared)
|
|
|
|
this._root = root = root.clone();
|
|
|
|
try {
|
|
|
|
var r = root.forRange(low, high, includeHigh, true, this, initialCounter || 0, onFound);
|
|
|
|
return typeof r === "number" ? r : r.break!;
|
|
|
|
} finally {
|
|
|
|
while (root.keys.length <= 1 && !root.isLeaf)
|
|
|
|
this._root = root = root.keys.length === 0 ? EmptyLeaf :
|
|
|
|
(root as any as BNodeInternal<K,V>).children[0];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/** Same as `editRange` except that the callback is called for all pairs. */
|
|
|
|
editAll<R=V>(onFound: (k:K,v:V,counter:number) => EditRangeResult<V,R>|void, initialCounter?: number): R|number {
|
|
|
|
return this.editRange(this.minKey()!, this.maxKey()!, true, onFound, initialCounter);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Removes a range of key-value pairs from the B+ tree.
|
|
|
|
* @param low The first key scanned will be greater than or equal to `low`.
|
|
|
|
* @param high Scanning stops when a key larger than this is reached.
|
|
|
|
* @param includeHigh Specifies whether the `high` key, if present, is deleted.
|
|
|
|
* @returns The number of key-value pairs that were deleted.
|
|
|
|
* @description Computational complexity: O(log size + number of items deleted)
|
|
|
|
*/
|
|
|
|
deleteRange(low: K, high: K, includeHigh: boolean): number {
|
|
|
|
return this.editRange(low, high, includeHigh, DeleteRange);
|
|
|
|
}
|
|
|
|
|
|
|
|
/** Deletes a series of keys from the collection. */
|
|
|
|
deleteKeys(keys: K[]): number {
|
|
|
|
for (var i = 0, r = 0; i < keys.length; i++)
|
|
|
|
if (this.delete(keys[i]))
|
|
|
|
r++;
|
|
|
|
return r;
|
|
|
|
}
|
|
|
|
|
|
|
|
/** Gets the height of the tree: the number of internal nodes between the
|
|
|
|
* BTree object and its leaf nodes (zero if there are no internal nodes). */
|
|
|
|
get height(): number {
|
|
|
|
for (var node = this._root, h = -1; node != null; h++)
|
|
|
|
node = (node as any).children;
|
|
|
|
return h;
|
|
|
|
}
|
|
|
|
|
|
|
|
/** Makes the object read-only to ensure it is not accidentally modified.
|
|
|
|
* Freezing does not have to be permanent; unfreeze() reverses the effect.
|
|
|
|
* This is accomplished by replacing mutator functions with a function
|
|
|
|
* that throws an Error. Compared to using a property (e.g. this.isFrozen)
|
|
|
|
* this implementation gives better performance in non-frozen BTrees.
|
|
|
|
*/
|
|
|
|
freeze() {
|
|
|
|
var t = this as any;
|
|
|
|
// Note: all other mutators ultimately call set() or editRange()
|
|
|
|
// so we don't need to override those others.
|
|
|
|
t.clear = t.set = t.editRange = function() {
|
|
|
|
throw new Error("Attempted to modify a frozen BTree");
|
|
|
|
};
|
|
|
|
}
|
|
|
|
|
|
|
|
/** Ensures mutations are allowed, reversing the effect of freeze(). */
|
|
|
|
unfreeze() {
|
|
|
|
delete this.clear;
|
|
|
|
delete this.set;
|
|
|
|
delete this.editRange;
|
|
|
|
}
|
|
|
|
|
|
|
|
/** Returns true if the tree appears to be frozen. */
|
|
|
|
get isFrozen() {
|
|
|
|
return this.hasOwnProperty('editRange');
|
|
|
|
}
|
|
|
|
|
|
|
|
/** Scans the tree for signs of serious bugs (e.g. this.size doesn't match
|
|
|
|
* number of elements, internal nodes not caching max element properly...)
|
|
|
|
* Computational complexity: O(number of nodes), i.e. O(size). This method
|
|
|
|
* skips the most expensive test - whether all keys are sorted - but it
|
|
|
|
* does check that maxKey() of the children of internal nodes are sorted. */
|
|
|
|
checkValid() {
|
|
|
|
var size = this._root.checkValid(0, this);
|
|
|
|
check(size === this.size, "size mismatch: counted ", size, "but stored", this.size);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
declare const Symbol: any;
|
|
|
|
if (Symbol && Symbol.iterator) // iterator is equivalent to entries()
|
|
|
|
(BTree as any).prototype[Symbol.iterator] = BTree.prototype.entries;
|
|
|
|
(BTree as any).prototype.where = BTree.prototype.filter;
|
|
|
|
(BTree as any).prototype.setRange = BTree.prototype.setPairs;
|
|
|
|
(BTree as any).prototype.add = BTree.prototype.set;
|
|
|
|
|
2019-11-19 19:27:26 +01:00
|
|
|
function iterator<T>(next: () => {done?:boolean,value?:T} = (() => ({ done:true, value:undefined }))): IterableIterator<T> {
|
2019-06-15 22:44:54 +02:00
|
|
|
var result: any = { next };
|
|
|
|
if (Symbol && Symbol.iterator)
|
|
|
|
result[Symbol.iterator] = function() { return this; };
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/** Leaf node / base class. **************************************************/
|
|
|
|
class BNode<K,V> {
|
|
|
|
// If this is an internal node, _keys[i] is the highest key in children[i].
|
|
|
|
keys: K[];
|
|
|
|
values: V[];
|
|
|
|
isShared: true | undefined;
|
|
|
|
get isLeaf() { return (this as any).children === undefined; }
|
|
|
|
|
|
|
|
constructor(keys: K[] = [], values?: V[]) {
|
|
|
|
this.keys = keys;
|
|
|
|
this.values = values || undefVals as any[];
|
|
|
|
this.isShared = undefined;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Shared methods /////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
maxKey() {
|
|
|
|
return this.keys[this.keys.length-1];
|
|
|
|
}
|
|
|
|
|
|
|
|
// If key not found, returns i^failXor where i is the insertion index.
|
|
|
|
// Callers that don't care whether there was a match will set failXor=0.
|
|
|
|
indexOf(key: K, failXor: number, cmp: (a:K, b:K) => number): index {
|
|
|
|
// TODO: benchmark multiple search strategies
|
|
|
|
const keys = this.keys;
|
|
|
|
var lo = 0, hi = keys.length, mid = hi >> 1;
|
|
|
|
while(lo < hi) {
|
|
|
|
var c = cmp(keys[mid], key);
|
|
|
|
if (c < 0)
|
|
|
|
lo = mid + 1;
|
|
|
|
else if (c > 0) // key < keys[mid]
|
|
|
|
hi = mid;
|
|
|
|
else if (c === 0)
|
|
|
|
return mid;
|
|
|
|
else {
|
|
|
|
// c is NaN or otherwise invalid
|
|
|
|
if (key === key) // at least the search key is not NaN
|
|
|
|
return keys.length;
|
|
|
|
else
|
|
|
|
throw new Error("BTree: NaN was used as a key");
|
|
|
|
}
|
|
|
|
mid = (lo + hi) >> 1;
|
|
|
|
}
|
|
|
|
return mid ^ failXor;
|
|
|
|
|
|
|
|
// Unrolled version: benchmarks show same speed, not worth using
|
|
|
|
/*var i = 1, c: number = 0, sum = 0;
|
|
|
|
if (keys.length >= 4) {
|
|
|
|
i = 3;
|
|
|
|
if (keys.length >= 8) {
|
|
|
|
i = 7;
|
|
|
|
if (keys.length >= 16) {
|
|
|
|
i = 15;
|
|
|
|
if (keys.length >= 32) {
|
|
|
|
i = 31;
|
|
|
|
if (keys.length >= 64) {
|
|
|
|
i = 127;
|
|
|
|
i += (c = i < keys.length ? cmp(keys[i], key) : 1) < 0 ? 64 : -64;
|
|
|
|
sum += c;
|
|
|
|
i += (c = i < keys.length ? cmp(keys[i], key) : 1) < 0 ? 32 : -32;
|
|
|
|
sum += c;
|
|
|
|
}
|
|
|
|
i += (c = i < keys.length ? cmp(keys[i], key) : 1) < 0 ? 16 : -16;
|
|
|
|
sum += c;
|
|
|
|
}
|
|
|
|
i += (c = i < keys.length ? cmp(keys[i], key) : 1) < 0 ? 8 : -8;
|
|
|
|
sum += c;
|
|
|
|
}
|
|
|
|
i += (c = i < keys.length ? cmp(keys[i], key) : 1) < 0 ? 4 : -4;
|
|
|
|
sum += c;
|
|
|
|
}
|
|
|
|
i += (c = i < keys.length ? cmp(keys[i], key) : 1) < 0 ? 2 : -2;
|
|
|
|
sum += c;
|
|
|
|
}
|
|
|
|
i += (c = i < keys.length ? cmp(keys[i], key) : 1) < 0 ? 1 : -1;
|
|
|
|
c = i < keys.length ? cmp(keys[i], key) : 1;
|
|
|
|
sum += c;
|
|
|
|
if (c < 0) {
|
|
|
|
++i;
|
|
|
|
c = i < keys.length ? cmp(keys[i], key) : 1;
|
|
|
|
sum += c;
|
|
|
|
}
|
|
|
|
if (sum !== sum) {
|
|
|
|
if (key === key) // at least the search key is not NaN
|
|
|
|
return keys.length ^ failXor;
|
|
|
|
else
|
|
|
|
throw new Error("BTree: NaN was used as a key");
|
|
|
|
}
|
|
|
|
return c === 0 ? i : i ^ failXor;*/
|
|
|
|
}
|
|
|
|
|
|
|
|
// Leaf Node: misc //////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
minKey() {
|
|
|
|
return this.keys[0];
|
|
|
|
}
|
|
|
|
|
|
|
|
clone(): BNode<K,V> {
|
|
|
|
var v = this.values;
|
|
|
|
return new BNode<K,V>(this.keys.slice(0), v === undefVals ? v : v.slice(0));
|
|
|
|
}
|
|
|
|
|
|
|
|
greedyClone(force?: boolean): BNode<K,V> {
|
|
|
|
return this.isShared && !force ? this : this.clone();
|
|
|
|
}
|
|
|
|
|
|
|
|
get(key: K, defaultValue: V|undefined, tree: BTree<K,V>): V|undefined {
|
|
|
|
var i = this.indexOf(key, -1, tree._compare);
|
|
|
|
return i < 0 ? defaultValue : this.values[i];
|
|
|
|
}
|
|
|
|
|
|
|
|
checkValid(depth: number, tree: BTree<K,V>): number {
|
|
|
|
var kL = this.keys.length, vL = this.values.length;
|
|
|
|
check(this.values === undefVals ? kL <= vL : kL === vL,
|
|
|
|
"keys/values length mismatch: depth", depth, "with lengths", kL, vL);
|
|
|
|
// Note: we don't check for "node too small" because sometimes a node
|
|
|
|
// can legitimately have size 1. This occurs if there is a batch
|
|
|
|
// deletion, leaving a node of size 1, and the siblings are full so
|
|
|
|
// it can't be merged with adjacent nodes. However, the parent will
|
|
|
|
// verify that the average node size is at least half of the maximum.
|
|
|
|
check(depth == 0 || kL > 0, "empty leaf at depth", depth);
|
|
|
|
return kL;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Leaf Node: set & node splitting //////////////////////////////////////////
|
|
|
|
|
|
|
|
set(key: K, value: V, overwrite: boolean|undefined, tree: BTree<K,V>): boolean|BNode<K,V> {
|
|
|
|
var i = this.indexOf(key, -1, tree._compare);
|
|
|
|
if (i < 0) {
|
|
|
|
// key does not exist yet
|
|
|
|
i = ~i;
|
|
|
|
tree._size++;
|
|
|
|
|
|
|
|
if (this.keys.length < tree._maxNodeSize) {
|
|
|
|
return this.insertInLeaf(i, key, value, tree);
|
|
|
|
} else {
|
|
|
|
// This leaf node is full and must split
|
|
|
|
var newRightSibling = this.splitOffRightSide(), target: BNode<K,V> = this;
|
|
|
|
if (i > this.keys.length) {
|
|
|
|
i -= this.keys.length;
|
|
|
|
target = newRightSibling;
|
|
|
|
}
|
|
|
|
target.insertInLeaf(i, key, value, tree);
|
|
|
|
return newRightSibling;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
// Key already exists
|
|
|
|
if (overwrite !== false) {
|
|
|
|
if (value !== undefined)
|
|
|
|
this.reifyValues();
|
|
|
|
// usually this is a no-op, but some users may wish to edit the key
|
|
|
|
this.keys[i] = key;
|
|
|
|
this.values[i] = value;
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
reifyValues() {
|
|
|
|
if (this.values === undefVals)
|
|
|
|
return this.values = this.values.slice(0, this.keys.length);
|
|
|
|
return this.values;
|
|
|
|
}
|
|
|
|
|
|
|
|
insertInLeaf(i: index, key: K, value: V, tree: BTree<K,V>) {
|
|
|
|
this.keys.splice(i, 0, key);
|
|
|
|
if (this.values === undefVals) {
|
|
|
|
while (undefVals.length < tree._maxNodeSize)
|
|
|
|
undefVals.push(undefined);
|
|
|
|
if (value === undefined) {
|
|
|
|
return true;
|
|
|
|
} else {
|
|
|
|
this.values = undefVals.slice(0, this.keys.length - 1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
this.values.splice(i, 0, value);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
takeFromRight(rhs: BNode<K,V>) {
|
|
|
|
// Reminder: parent node must update its copy of key for this node
|
|
|
|
// assert: neither node is shared
|
|
|
|
// assert rhs.keys.length > (maxNodeSize/2 && this.keys.length<maxNodeSize)
|
|
|
|
var v = this.values;
|
|
|
|
if (rhs.values === undefVals) {
|
|
|
|
if (v !== undefVals)
|
|
|
|
v.push(undefined as any);
|
|
|
|
} else {
|
|
|
|
v = this.reifyValues();
|
|
|
|
v.push(rhs.values.shift()!);
|
|
|
|
}
|
|
|
|
this.keys.push(rhs.keys.shift()!);
|
|
|
|
}
|
|
|
|
|
|
|
|
takeFromLeft(lhs: BNode<K,V>) {
|
|
|
|
// Reminder: parent node must update its copy of key for this node
|
|
|
|
// assert: neither node is shared
|
|
|
|
// assert rhs.keys.length > (maxNodeSize/2 && this.keys.length<maxNodeSize)
|
|
|
|
var v = this.values;
|
|
|
|
if (lhs.values === undefVals) {
|
|
|
|
if (v !== undefVals)
|
|
|
|
v.unshift(undefined as any);
|
|
|
|
} else {
|
|
|
|
v = this.reifyValues();
|
|
|
|
v.unshift(lhs.values.pop()!);
|
|
|
|
}
|
|
|
|
this.keys.unshift(lhs.keys.pop()!);
|
|
|
|
}
|
|
|
|
|
|
|
|
splitOffRightSide(): BNode<K,V> {
|
|
|
|
// Reminder: parent node must update its copy of key for this node
|
|
|
|
var half = this.keys.length >> 1, keys = this.keys.splice(half);
|
|
|
|
var values = this.values === undefVals ? undefVals : this.values.splice(half);
|
|
|
|
return new BNode<K,V>(keys, values);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Leaf Node: scanning & deletions //////////////////////////////////////////
|
|
|
|
|
|
|
|
forRange<R>(low: K, high: K, includeHigh: boolean|undefined, editMode: boolean, tree: BTree<K,V>, count: number,
|
|
|
|
onFound?: (k:K, v:V, counter:number) => EditRangeResult<V,R>|void): EditRangeResult<V,R>|number {
|
|
|
|
var cmp = tree._compare;
|
|
|
|
var iLow, iHigh;
|
|
|
|
if (high === low) {
|
|
|
|
if (!includeHigh)
|
|
|
|
return count;
|
|
|
|
iHigh = (iLow = this.indexOf(low, -1, cmp)) + 1;
|
|
|
|
if (iLow < 0)
|
|
|
|
return count;
|
|
|
|
} else {
|
|
|
|
iLow = this.indexOf(low, 0, cmp);
|
|
|
|
iHigh = this.indexOf(high, -1, cmp);
|
|
|
|
if (iHigh < 0)
|
|
|
|
iHigh = ~iHigh;
|
|
|
|
else if (includeHigh === true)
|
|
|
|
iHigh++;
|
|
|
|
}
|
|
|
|
var keys = this.keys, values = this.values;
|
|
|
|
if (onFound !== undefined) {
|
|
|
|
for(var i = iLow; i < iHigh; i++) {
|
|
|
|
var key = keys[i];
|
|
|
|
var result = onFound(key, values[i], count++);
|
|
|
|
if (result !== undefined) {
|
|
|
|
if (editMode === true) {
|
|
|
|
if (key !== keys[i] || this.isShared === true)
|
|
|
|
throw new Error("BTree illegally changed or cloned in editRange");
|
|
|
|
if (result.delete) {
|
|
|
|
this.keys.splice(i, 1);
|
|
|
|
if (this.values !== undefVals)
|
|
|
|
this.values.splice(i, 1);
|
|
|
|
tree._size--;
|
|
|
|
i--;
|
|
|
|
iHigh--;
|
|
|
|
} else if (result.hasOwnProperty('value')) {
|
|
|
|
values![i] = result.value!;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (result.break !== undefined)
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else
|
|
|
|
count += iHigh - iLow;
|
|
|
|
return count;
|
|
|
|
}
|
|
|
|
|
|
|
|
/** Adds entire contents of right-hand sibling (rhs is left unchanged) */
|
|
|
|
mergeSibling(rhs: BNode<K,V>, _: number) {
|
|
|
|
this.keys.push.apply(this.keys, rhs.keys);
|
|
|
|
if (this.values === undefVals) {
|
|
|
|
if (rhs.values === undefVals)
|
|
|
|
return;
|
|
|
|
this.values = this.values.slice(0, this.keys.length);
|
|
|
|
}
|
|
|
|
this.values.push.apply(this.values, rhs.reifyValues());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/** Internal node (non-leaf node) ********************************************/
|
|
|
|
class BNodeInternal<K,V> extends BNode<K,V> {
|
|
|
|
// Note: conventionally B+ trees have one fewer key than the number of
|
|
|
|
// children, but I find it easier to keep the array lengths equal: each
|
|
|
|
// keys[i] caches the value of children[i].maxKey().
|
|
|
|
children: BNode<K,V>[];
|
|
|
|
|
|
|
|
constructor(children: BNode<K,V>[], keys?: K[]) {
|
|
|
|
if (!keys) {
|
|
|
|
keys = [];
|
|
|
|
for (var i = 0; i < children.length; i++)
|
|
|
|
keys[i] = children[i].maxKey();
|
|
|
|
}
|
|
|
|
super(keys);
|
|
|
|
this.children = children;
|
|
|
|
}
|
|
|
|
|
|
|
|
clone(): BNode<K,V> {
|
|
|
|
var children = this.children.slice(0);
|
|
|
|
for (var i = 0; i < children.length; i++)
|
|
|
|
children[i].isShared = true;
|
|
|
|
return new BNodeInternal<K,V>(children, this.keys.slice(0));
|
|
|
|
}
|
|
|
|
|
|
|
|
greedyClone(force?: boolean): BNode<K,V> {
|
|
|
|
if (this.isShared && !force)
|
|
|
|
return this;
|
|
|
|
var nu = new BNodeInternal<K,V>(this.children.slice(0), this.keys.slice(0));
|
|
|
|
for (var i = 0; i < nu.children.length; i++)
|
|
|
|
nu.children[i] = nu.children[i].greedyClone();
|
|
|
|
return nu;
|
|
|
|
}
|
|
|
|
|
|
|
|
minKey() {
|
|
|
|
return this.children[0].minKey();
|
|
|
|
}
|
|
|
|
|
|
|
|
get(key: K, defaultValue: V|undefined, tree: BTree<K,V>): V|undefined {
|
|
|
|
var i = this.indexOf(key, 0, tree._compare), children = this.children;
|
|
|
|
return i < children.length ? children[i].get(key, defaultValue, tree) : undefined;
|
|
|
|
}
|
|
|
|
|
|
|
|
checkValid(depth: number, tree: BTree<K,V>) : number {
|
|
|
|
var kL = this.keys.length, cL = this.children.length;
|
|
|
|
check(kL === cL, "keys/children length mismatch: depth", depth, "lengths", kL, cL);
|
|
|
|
check(kL > 1, "internal node has length", kL, "at depth", depth);
|
|
|
|
var size = 0, c = this.children, k = this.keys, childSize = 0;
|
|
|
|
for (var i = 0; i < cL; i++) {
|
|
|
|
size += c[i].checkValid(depth + 1, tree);
|
|
|
|
childSize += c[i].keys.length;
|
|
|
|
check(size >= childSize, "wtf"); // no way this will ever fail
|
|
|
|
check(i === 0 || c[i-1].constructor === c[i].constructor, "type mismatch");
|
|
|
|
if (c[i].maxKey() != k[i])
|
|
|
|
check(false, "keys[", i, "] =", k[i], "is wrong, should be ", c[i].maxKey(), "at depth", depth);
|
|
|
|
if (!(i === 0 || tree._compare(k[i-1], k[i]) < 0))
|
|
|
|
check(false, "sort violation at depth", depth, "index", i, "keys", k[i-1], k[i]);
|
|
|
|
}
|
|
|
|
var toofew = childSize < (tree.maxNodeSize >> 1)*cL;
|
|
|
|
if (toofew || childSize > tree.maxNodeSize*cL)
|
|
|
|
check(false, toofew ? "too few" : "too many", "children (", childSize, size, ") at depth", depth, ", maxNodeSize:", tree.maxNodeSize, "children.length:", cL);
|
|
|
|
return size;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Internal Node: set & node splitting //////////////////////////////////////
|
|
|
|
|
|
|
|
set(key: K, value: V, overwrite: boolean|undefined, tree: BTree<K,V>): boolean|BNodeInternal<K,V> {
|
|
|
|
var c = this.children, max = tree._maxNodeSize, cmp = tree._compare;
|
|
|
|
var i = Math.min(this.indexOf(key, 0, cmp), c.length - 1), child = c[i];
|
|
|
|
|
|
|
|
if (child.isShared)
|
|
|
|
c[i] = child = child.clone();
|
|
|
|
if (child.keys.length >= max) {
|
|
|
|
// child is full; inserting anything else will cause a split.
|
|
|
|
// Shifting an item to the left or right sibling may avoid a split.
|
|
|
|
// We can do a shift if the adjacent node is not full and if the
|
|
|
|
// current key can still be placed in the same node after the shift.
|
|
|
|
var other: BNode<K,V>;
|
|
|
|
if (i > 0 && (other = c[i-1]).keys.length < max && cmp(child.keys[0], key) < 0) {
|
|
|
|
if (other.isShared)
|
|
|
|
c[i-1] = other = other.clone();
|
|
|
|
other.takeFromRight(child);
|
|
|
|
this.keys[i-1] = other.maxKey();
|
|
|
|
} else if ((other = c[i+1]) !== undefined && other.keys.length < max && cmp(child.maxKey(), key) < 0) {
|
|
|
|
if (other.isShared)
|
|
|
|
c[i+1] = other = other.clone();
|
|
|
|
other.takeFromLeft(child);
|
|
|
|
this.keys[i] = c[i].maxKey();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
var result = child.set(key, value, overwrite, tree);
|
|
|
|
if (result === false)
|
|
|
|
return false;
|
|
|
|
this.keys[i] = child.maxKey();
|
|
|
|
if (result === true)
|
|
|
|
return true;
|
|
|
|
|
|
|
|
// The child has split and `result` is a new right child... does it fit?
|
|
|
|
if (this.keys.length < max) { // yes
|
|
|
|
this.insert(i+1, result);
|
|
|
|
return true;
|
|
|
|
} else { // no, we must split also
|
|
|
|
var newRightSibling = this.splitOffRightSide(), target: BNodeInternal<K,V> = this;
|
|
|
|
if (cmp(result.maxKey(), this.maxKey()) > 0) {
|
|
|
|
target = newRightSibling;
|
|
|
|
i -= this.keys.length;
|
|
|
|
}
|
|
|
|
target.insert(i+1, result);
|
|
|
|
return newRightSibling;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
insert(i: index, child: BNode<K,V>) {
|
|
|
|
this.children.splice(i, 0, child);
|
|
|
|
this.keys.splice(i, 0, child.maxKey());
|
|
|
|
}
|
|
|
|
|
|
|
|
splitOffRightSide() {
|
|
|
|
var half = this.children.length >> 1;
|
|
|
|
return new BNodeInternal<K,V>(this.children.splice(half), this.keys.splice(half));
|
|
|
|
}
|
|
|
|
|
|
|
|
takeFromRight(rhs: BNode<K,V>) {
|
|
|
|
// Reminder: parent node must update its copy of key for this node
|
|
|
|
// assert: neither node is shared
|
|
|
|
// assert rhs.keys.length > (maxNodeSize/2 && this.keys.length<maxNodeSize)
|
|
|
|
this.keys.push(rhs.keys.shift()!);
|
|
|
|
this.children.push((rhs as BNodeInternal<K,V>).children.shift()!);
|
|
|
|
}
|
|
|
|
|
|
|
|
takeFromLeft(lhs: BNode<K,V>) {
|
|
|
|
// Reminder: parent node must update its copy of key for this node
|
|
|
|
// assert: neither node is shared
|
|
|
|
// assert rhs.keys.length > (maxNodeSize/2 && this.keys.length<maxNodeSize)
|
|
|
|
this.keys.unshift(lhs.keys.pop()!);
|
|
|
|
this.children.unshift((lhs as BNodeInternal<K,V>).children.pop()!);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Internal Node: scanning & deletions //////////////////////////////////////
|
|
|
|
|
|
|
|
forRange<R>(low: K, high: K, includeHigh: boolean|undefined, editMode: boolean, tree: BTree<K,V>, count: number,
|
|
|
|
onFound?: (k:K, v:V, counter:number) => EditRangeResult<V,R>|void): EditRangeResult<V,R>|number
|
|
|
|
{
|
|
|
|
var cmp = tree._compare;
|
|
|
|
var iLow = this.indexOf(low, 0, cmp), i = iLow;
|
|
|
|
var iHigh = Math.min(high === low ? iLow : this.indexOf(high, 0, cmp), this.keys.length-1);
|
|
|
|
var keys = this.keys, children = this.children;
|
|
|
|
if (!editMode) {
|
|
|
|
// Simple case
|
|
|
|
for(; i <= iHigh; i++) {
|
|
|
|
var result = children[i].forRange(low, high, includeHigh, editMode, tree, count, onFound);
|
|
|
|
if (typeof result !== 'number')
|
|
|
|
return result;
|
|
|
|
count = result;
|
|
|
|
}
|
|
|
|
} else if (i <= iHigh) {
|
|
|
|
try {
|
|
|
|
for(; i <= iHigh; i++) {
|
|
|
|
if (children[i].isShared)
|
|
|
|
children[i] = children[i].clone();
|
|
|
|
var result = children[i].forRange(low, high, includeHigh, editMode, tree, count, onFound);
|
|
|
|
keys[i] = children[i].maxKey();
|
|
|
|
if (typeof result !== 'number')
|
|
|
|
return result;
|
|
|
|
count = result;
|
|
|
|
}
|
|
|
|
} finally {
|
|
|
|
// Deletions may have occurred, so look for opportunities to merge nodes.
|
|
|
|
var half = tree._maxNodeSize >> 1;
|
|
|
|
if (iLow > 0)
|
|
|
|
iLow--;
|
|
|
|
for(i = iHigh; i >= iLow; i--) {
|
|
|
|
if (children[i].keys.length <= half)
|
|
|
|
this.tryMerge(i, tree._maxNodeSize);
|
|
|
|
}
|
|
|
|
// Are we completely empty?
|
|
|
|
if (children[0].keys.length === 0) {
|
|
|
|
check(children.length === 1 && keys.length === 1, "emptiness bug");
|
|
|
|
children.shift();
|
|
|
|
keys.shift();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return count;
|
|
|
|
}
|
|
|
|
|
|
|
|
/** Merges child i with child i+1 if their combined size is not too large */
|
|
|
|
tryMerge(i: index, maxSize: number): boolean {
|
|
|
|
var children = this.children;
|
|
|
|
if (i >= 0 && i + 1 < children.length) {
|
|
|
|
if (children[i].keys.length + children[i+1].keys.length <= maxSize) {
|
|
|
|
if (children[i].isShared) // cloned already UNLESS i is outside scan range
|
|
|
|
children[i] = children[i].clone();
|
|
|
|
children[i].mergeSibling(children[i+1], maxSize);
|
|
|
|
children.splice(i + 1, 1);
|
|
|
|
this.keys.splice(i + 1, 1);
|
|
|
|
this.keys[i] = children[i].maxKey();
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
mergeSibling(rhs: BNode<K,V>, maxNodeSize: number) {
|
|
|
|
// assert !this.isShared;
|
|
|
|
var oldLength = this.keys.length;
|
|
|
|
this.keys.push.apply(this.keys, rhs.keys);
|
|
|
|
this.children.push.apply(this.children, (rhs as any as BNodeInternal<K,V>).children);
|
|
|
|
// If our children are themselves almost empty due to a mass-delete,
|
|
|
|
// they may need to be merged too (but only the oldLength-1 and its
|
|
|
|
// right sibling should need this).
|
|
|
|
this.tryMerge(oldLength-1, maxNodeSize);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Optimization: this array of `undefined`s is used instead of a normal
|
|
|
|
// array of values in nodes where `undefined` is the only value.
|
|
|
|
// Its length is extended to max node size on first use; since it can
|
|
|
|
// be shared between trees with different maximums, its length can only
|
|
|
|
// increase, never decrease. Its type should be undefined[] but strangely
|
|
|
|
// TypeScript won't allow the comparison V[] === undefined[]. To prevent
|
|
|
|
// users from making this array too large, BTree has a maximum node size.
|
|
|
|
var undefVals: any[] = [];
|
|
|
|
|
|
|
|
const Delete = {delete: true}, DeleteRange = () => Delete;
|
|
|
|
const Break = {break: true};
|
|
|
|
const EmptyLeaf = (function() {
|
|
|
|
var n = new BNode<any,any>(); n.isShared = true; return n;
|
|
|
|
})();
|
|
|
|
const EmptyArray: any[] = [];
|
|
|
|
const ReusedArray: any[] = []; // assumed thread-local
|
|
|
|
|
|
|
|
function check(fact: boolean, ...args: any[]) {
|
|
|
|
if (!fact) {
|
|
|
|
args.unshift('B+ tree '); // at beginning of message
|
|
|
|
throw new Error(args.join(' '));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/** A BTree frozen in the empty state. */
|
2019-11-19 19:27:26 +01:00
|
|
|
export const EmptyBTree = (() => { let t = new BTree(); t.freeze(); return t; })();
|