
Are you old enough to buy this?
Zero-Knowledge Age Restriction for GNU Taler

Özgür Kesim
December 29, 2022

FU Berlin

1

Chapters

1. TODO: something something

2

Introduction

Who am I

TODO: who am i

3

Age restriction in E-commerce

Problem:

Verification of minimum age requirements in e-commerce.

Common solutions:

Privacy Ext. authority

1. ID Verification

bad required

2. Restricted Accounts

bad required

3. Attribute-based

good required

Principle of Subsidiarity is violated

4

Age restriction in E-commerce

Problem:

Verification of minimum age requirements in e-commerce.

Common solutions:
Privacy

Ext. authority

1. ID Verification bad

required

2. Restricted Accounts bad

required

3. Attribute-based good

required

Principle of Subsidiarity is violated

4

Age restriction in E-commerce

Problem:

Verification of minimum age requirements in e-commerce.

Common solutions:
Privacy Ext. authority

1. ID Verification bad required

2. Restricted Accounts bad required

3. Attribute-based good required

Principle of Subsidiarity is violated

4

Age restriction in E-commerce

Problem:

Verification of minimum age requirements in e-commerce.

Common solutions:
Privacy Ext. authority

1. ID Verification bad required

2. Restricted Accounts bad required

3. Attribute-based good required

Principle of Subsidiarity is violated

4

Principle of Subsidiarity

Functions of government—such as granting and
restricting rights—should be performed
at the lowest level of authority possible,

as long as they can be performed adequately.

For age-restriction, the lowest level of authority is:

Parents, guardians and caretakers

5

Principle of Subsidiarity

Functions of government—such as granting and
restricting rights—should be performed
at the lowest level of authority possible,

as long as they can be performed adequately.

For age-restriction, the lowest level of authority is:

Parents, guardians and caretakers

5

Our contribution

Design and implementation of an age restriction scheme
with the following goals:

1. It ties age restriction to the ability to pay (not to ID’s)
2. maintains anonymity of buyers
3. maintains unlinkability of transactions
4. aligns with principle of subsidiartiy
5. is practical and efficient

6

Age Restriction

Age restriction

• Assumption: Checking accounts are
under control of eligible
adults/guardians.

• Guardians commit to an maximum age
• Minors attest their adequate age
• Merchants verify the attestations
• Minors derive age commitments from
existing ones

• Exchanges compare the derived age
commitments

E

C M

G

Commit

Attest

Verify

Derive

Compare

Note: Scheme is independent of payment service protocol.

7

Age restriction

• Assumption: Checking accounts are
under control of eligible
adults/guardians.

• Guardians commit to an maximum age

• Minors attest their adequate age
• Merchants verify the attestations
• Minors derive age commitments from
existing ones

• Exchanges compare the derived age
commitments

E

C M

G

Commit

Attest

Verify

Derive

Compare

Note: Scheme is independent of payment service protocol.

7

Age restriction

• Assumption: Checking accounts are
under control of eligible
adults/guardians.

• Guardians commit to an maximum age
• Minors attest their adequate age

• Merchants verify the attestations
• Minors derive age commitments from
existing ones

• Exchanges compare the derived age
commitments

E

C M

G

Commit

Attest

Verify

Derive

Compare

Note: Scheme is independent of payment service protocol.

7

Age restriction

• Assumption: Checking accounts are
under control of eligible
adults/guardians.

• Guardians commit to an maximum age
• Minors attest their adequate age
• Merchants verify the attestations

• Minors derive age commitments from
existing ones

• Exchanges compare the derived age
commitments

E

C M

G

Commit

Attest

Verify

Derive

Compare

Note: Scheme is independent of payment service protocol.

7

Age restriction

• Assumption: Checking accounts are
under control of eligible
adults/guardians.

• Guardians commit to an maximum age
• Minors attest their adequate age
• Merchants verify the attestations
• Minors derive age commitments from
existing ones

• Exchanges compare the derived age
commitments

E

C M

G

Commit

Attest

Verify

Derive

Compare

Note: Scheme is independent of payment service protocol.

7

Age restriction

• Assumption: Checking accounts are
under control of eligible
adults/guardians.

• Guardians commit to an maximum age
• Minors attest their adequate age
• Merchants verify the attestations
• Minors derive age commitments from
existing ones

• Exchanges compare the derived age
commitments

E

C M

G

Commit

Attest

Verify

Derive

Compare

Note: Scheme is independent of payment service protocol.

7

Age restriction

• Assumption: Checking accounts are
under control of eligible
adults/guardians.

• Guardians commit to an maximum age
• Minors attest their adequate age
• Merchants verify the attestations
• Minors derive age commitments from
existing ones

• Exchanges compare the derived age
commitments

E

C M

G

Commit

Attest

Verify

Derive

Compare

Note: Scheme is independent of payment service protocol.

7

Formal Function Signatures

Searching for functions

with the following signatures

Commit

: (a, ω) 7→ (Q,P) NM×Ω→O×P,

Attest

: (m,Q,P) 7→ T NM×O×P→T∪{⊥},

Verify

: (m,Q,T) 7→ b NM×O×T→Z2,

Derive

: (Q,P, ω) 7→ (Q′,P′, β) O×P×Ω→O×P×B,

Compare

: (Q,Q′, β) 7→ b O×O×B→Z2,

with Ω,P,O,T,B sufficiently large sets.

Basic and security requirements are defined later.

Mnemonics:
O = cOmmitments, Q = Q-mitment (commitment), P = Proofs, P = Proof,
T = aTtestations, T = aTtestation, B = Blindings, β = βlinding.

8

Formal Function Signatures

Searching for functions with the following signatures

Commit : (a, ω) 7→ (Q,P) NM×Ω→O×P,

Attest

: (m,Q,P) 7→ T NM×O×P→T∪{⊥},

Verify

: (m,Q,T) 7→ b NM×O×T→Z2,

Derive

: (Q,P, ω) 7→ (Q′,P′, β) O×P×Ω→O×P×B,

Compare

: (Q,Q′, β) 7→ b O×O×B→Z2,

with Ω,P,O,T,B sufficiently large sets.

Basic and security requirements are defined later.

Mnemonics:
O = cOmmitments, Q = Q-mitment (commitment), P = Proofs,

P = Proof,
T = aTtestations, T = aTtestation, B = Blindings, β = βlinding.

8

Formal Function Signatures

Searching for functions with the following signatures

Commit : (a, ω) 7→ (Q,P) NM×Ω→O×P,

Attest : (m,Q,P) 7→ T NM×O×P→T∪{⊥},

Verify

: (m,Q,T) 7→ b NM×O×T→Z2,

Derive

: (Q,P, ω) 7→ (Q′,P′, β) O×P×Ω→O×P×B,

Compare

: (Q,Q′, β) 7→ b O×O×B→Z2,

with Ω,P,O,T,B sufficiently large sets.

Basic and security requirements are defined later.

Mnemonics:
O = cOmmitments, Q = Q-mitment (commitment), P = Proofs, P = Proof,
T = aTtestations, T = aTtestation,

B = Blindings, β = βlinding.

8

Formal Function Signatures

Searching for functions with the following signatures

Commit : (a, ω) 7→ (Q,P) NM×Ω→O×P,

Attest : (m,Q,P) 7→ T NM×O×P→T∪{⊥},

Verify : (m,Q,T) 7→ b NM×O×T→Z2,

Derive

: (Q,P, ω) 7→ (Q′,P′, β) O×P×Ω→O×P×B,

Compare

: (Q,Q′, β) 7→ b O×O×B→Z2,

with Ω,P,O,T,B sufficiently large sets.

Basic and security requirements are defined later.

Mnemonics:
O = cOmmitments, Q = Q-mitment (commitment), P = Proofs, P = Proof,
T = aTtestations, T = aTtestation,

B = Blindings, β = βlinding.

8

Formal Function Signatures

Searching for functions with the following signatures

Commit : (a, ω) 7→ (Q,P) NM×Ω→O×P,

Attest : (m,Q,P) 7→ T NM×O×P→T∪{⊥},

Verify : (m,Q,T) 7→ b NM×O×T→Z2,

Derive : (Q,P, ω) 7→ (Q′,P′, β) O×P×Ω→O×P×B,

Compare

: (Q,Q′, β) 7→ b O×O×B→Z2,

with Ω,P,O,T,B sufficiently large sets.

Basic and security requirements are defined later.

Mnemonics:
O = cOmmitments, Q = Q-mitment (commitment), P = Proofs, P = Proof,
T = aTtestations, T = aTtestation, B = Blindings, β = βlinding.

8

Formal Function Signatures

Searching for functions with the following signatures

Commit : (a, ω) 7→ (Q,P) NM×Ω→O×P,

Attest : (m,Q,P) 7→ T NM×O×P→T∪{⊥},

Verify : (m,Q,T) 7→ b NM×O×T→Z2,

Derive : (Q,P, ω) 7→ (Q′,P′, β) O×P×Ω→O×P×B,

Compare : (Q,Q′, β) 7→ b O×O×B→Z2,

with Ω,P,O,T,B sufficiently large sets.

Basic and security requirements are defined later.

Mnemonics:
O = cOmmitments, Q = Q-mitment (commitment), P = Proofs, P = Proof,
T = aTtestations, T = aTtestation, B = Blindings, β = βlinding.

8

Formal Function Signatures

Searching for functions with the following signatures

Commit : (a, ω) 7→ (Q,P) NM×Ω→O×P,

Attest : (m,Q,P) 7→ T NM×O×P→T∪{⊥},

Verify : (m,Q,T) 7→ b NM×O×T→Z2,

Derive : (Q,P, ω) 7→ (Q′,P′, β) O×P×Ω→O×P×B,

Compare : (Q,Q′, β) 7→ b O×O×B→Z2,

with Ω,P,O,T,B sufficiently large sets.

Basic and security requirements are defined later.

Mnemonics:
O = cOmmitments, Q = Q-mitment (commitment), P = Proofs, P = Proof,
T = aTtestations, T = aTtestation, B = Blindings, β = βlinding.

8

Age restriction

E

C M

G

Commit

Attest

Verify

Derive

Compare

9

Achieving Unlinkability

E

C

Derive()

Compare()

(Q
i,
Q i+

1
)

Simple use of Derive() and Compare() is
problematic.

• Calling Derive() iteratively generates sequence
(Q0,Q1, . . .) of commitments.

• Exchange calls Compare(Qi,Qi+1, .)

=⇒ Exchange identifies sequence
=⇒ Unlinkability broken

10

Achieving Unlinkability

E

C

Derive()

Compare()

(Q
i,
Q i+

1
)

Simple use of Derive() and Compare() is
problematic.
• Calling Derive() iteratively generates sequence
(Q0,Q1, . . .) of commitments.

• Exchange calls Compare(Qi,Qi+1, .)

=⇒ Exchange identifies sequence
=⇒ Unlinkability broken

10

Achieving Unlinkability

E

C

Derive()

Compare()

(Q
i,
Q i+

1
)

Simple use of Derive() and Compare() is
problematic.
• Calling Derive() iteratively generates sequence
(Q0,Q1, . . .) of commitments.

• Exchange calls Compare(Qi,Qi+1, .)

=⇒ Exchange identifies sequence
=⇒ Unlinkability broken

10

Achieving Unlinkability

Definecut&chooseprotocolDeriveCompareκ, usingDerive()and
Compare().

Sketch:

1. C derives commitments (Q1, . . . ,Qκ) from Q0

by calling Derive() with blindings (β1, . . . , βκ)

2. C calculates h0 := H (H(Q1, β1)|| . . . ||H(Qκ, βκ))

3. C sends Q0 and h0 to E

4. E chooses γ ∈ {1, . . . , κ} randomly

5. C reveals hγ := H(Qγ , βγ) and all (Qi, βi), except (Qγ , βγ)

6. E compares h0 and H (H(Q1, β1)||...||hγ ||...||H(Qκ, βκ))

and evaluates Compare(Q0,Qi, βi).

Note: Scheme is similar to the refresh protocol in GNU Taler.

11

Achieving Unlinkability

Definecut&chooseprotocolDeriveCompareκ, usingDerive()and
Compare().

Sketch:

1. C derives commitments (Q1, . . . ,Qκ) from Q0

by calling Derive() with blindings (β1, . . . , βκ)

2. C calculates h0 := H (H(Q1, β1)|| . . . ||H(Qκ, βκ))

3. C sends Q0 and h0 to E

4. E chooses γ ∈ {1, . . . , κ} randomly

5. C reveals hγ := H(Qγ , βγ) and all (Qi, βi), except (Qγ , βγ)

6. E compares h0 and H (H(Q1, β1)||...||hγ ||...||H(Qκ, βκ))

and evaluates Compare(Q0,Qi, βi).

Note: Scheme is similar to the refresh protocol in GNU Taler.
11

Achieving Unlinkability

With DeriveCompareκ

• E learns nothing about Qγ ,
• trusts outcome with κ−1

κ certainty,
• i.e. C has 1

κ chance to cheat.

Note: Still need Derive and Compare to be defined.

12

Refined scheme

C

E

M

G

De
riv
eC
om
pa
re
κ

(Tm,Q)

Commit(a)

(Q, P
a)

Attest(m,Q,Pa) Verify(m,Q,Tm)

13

Basic Requirements

Candidate functions

(Commit,Attest,Verify,Derive,Compare)

must first meet basic requirements:

• Existence of attestations
• Efficacy of attestations
• Derivability of commitments and attestations

14

Basic Requirements

Existence of attestations

∀
a∈NM
ω∈Ω

: Commit(a, ω) =: (Q,P) =⇒ Attest(m,Q,P) =

{
T ∈ T, if m ≤ a
⊥ otherwise

Efficacy of attestations

Verify(m,Q, T) =

1, if ∃

P∈P
: Attest(m,Q,P) = T

0 otherwise

∀n≤a : Verify
(
n,Q,Attest(n,Q,P)

)
= 1.

etc.

15

Security Requirements

Candidate functionsmust alsomeet security requirements. Those
are defined via security games:

• Game: Age disclosure by commitment or attestation
↔ Requirement: Non-disclosure of age
• Game: Forging attestation
↔ Requirement: Unforgeability of minimum age
• Game: Distinguishing derived commitments and
attestations

↔ Requirement: Unlinkability of commitments and
attestations

Meeting the security requirements means that adversaries can
win those games only with negligible advantage.

Adversaries are arbitrary polynomial-time algorithms, acting on
all relevant input.

16

Security Requirements

Game GFAA (λ)—Forging an attest:
1. (a, ω) $←− NM−1 × Ω

2. (Q,P)← Commit(a, ω)
3. (m,T)← A(a,Q,P)
4. Return 0 if m ≤ a
5. Return Verify(m,Q,T)

Requirement: Unforgeability of minimum age

∀
A∈A(NM×O×P→NM×T)

: Pr
[
GFAA (λ) = 1

]
≤ ϵ(λ)

17

Solution/Instantiation

Solution: Instantiation with ECDSA

To Commit to age (group) a ∈ {1, . . . ,M}

1. Guardian generates ECDSA-keypairs, one per age
(group):

〈(q1,p1), . . . , (qM,pM)〉

2. Guardian then drops all private keys pi for i > a:⟨
(q1,p1), . . . , (qa,pa), (qa+1,⊥), . . . , (qM,⊥)

⟩
• Q⃗ := (q1, . . . ,qM) is the Commitment,
• P⃗a := (p1, . . . ,pa,⊥, . . . ,⊥) is the Proof

3. Guardian gives child 〈Q⃗, P⃗a〉

18

Solution: Instantiation with ECDSA

To Commit to age (group) a ∈ {1, . . . ,M}
1. Guardian generates ECDSA-keypairs, one per age

(group):

〈(q1,p1), . . . , (qM,pM)〉

2. Guardian then drops all private keys pi for i > a:⟨
(q1,p1), . . . , (qa,pa), (qa+1,⊥), . . . , (qM,⊥)

⟩
• Q⃗ := (q1, . . . ,qM) is the Commitment,
• P⃗a := (p1, . . . ,pa,⊥, . . . ,⊥) is the Proof

3. Guardian gives child 〈Q⃗, P⃗a〉

18

Solution: Instantiation with ECDSA

To Commit to age (group) a ∈ {1, . . . ,M}
1. Guardian generates ECDSA-keypairs, one per age

(group):

〈(q1,p1), . . . , (qM,pM)〉

2. Guardian then drops all private keys pi for i > a:⟨
(q1,p1), . . . , (qa,pa), (qa+1,⊥), . . . , (qM,⊥)

⟩
• Q⃗ := (q1, . . . ,qM) is the Commitment,
• P⃗a := (p1, . . . ,pa,⊥, . . . ,⊥) is the Proof

3. Guardian gives child 〈Q⃗, P⃗a〉

18

Solution: Instantiation with ECDSA

To Commit to age (group) a ∈ {1, . . . ,M}
1. Guardian generates ECDSA-keypairs, one per age

(group):

〈(q1,p1), . . . , (qM,pM)〉

2. Guardian then drops all private keys pi for i > a:⟨
(q1,p1), . . . , (qa,pa), (qa+1,⊥), . . . , (qM,⊥)

⟩
• Q⃗ := (q1, . . . ,qM) is the Commitment,
• P⃗a := (p1, . . . ,pa,⊥, . . . ,⊥) is the Proof

3. Guardian gives child 〈Q⃗, P⃗a〉

18

Instantiation with ECDSA

Child has

• ordered public-keys Q⃗ = (q1, . . . ,qM),
• (some) private-keys P⃗ = (p1, . . . ,pa,⊥, . . . ,⊥).

To Attest a minimum agem ≤ a:
Sign a message with ECDSA using private key pm

Merchant gets

• ordered public-keys Q⃗ = (q1, . . . ,qM)
• Signature σ

To Verify a minimum agem:
Verify the ECDSA-Signature σ with public key qm.

19

Instantiation with ECDSA

Child has

• ordered public-keys Q⃗ = (q1, . . . ,qM),
• (some) private-keys P⃗ = (p1, . . . ,pa,⊥, . . . ,⊥).

To Attest a minimum agem ≤ a:
Sign a message with ECDSA using private key pm

Merchant gets

• ordered public-keys Q⃗ = (q1, . . . ,qM)
• Signature σ

To Verify a minimum agem:
Verify the ECDSA-Signature σ with public key qm.

19

Instantiation with ECDSA

Child has

• ordered public-keys Q⃗ = (q1, . . . ,qM),
• (some) private-keys P⃗ = (p1, . . . ,pa,⊥, . . . ,⊥).

To Attest a minimum agem ≤ a:
Sign a message with ECDSA using private key pm

Merchant gets

• ordered public-keys Q⃗ = (q1, . . . ,qM)
• Signature σ

To Verify a minimum agem:
Verify the ECDSA-Signature σ with public key qm.

19

Instantiation with ECDSA

Child has

• ordered public-keys Q⃗ = (q1, . . . ,qM),
• (some) private-keys P⃗ = (p1, . . . ,pa,⊥, . . . ,⊥).

To Attest a minimum agem ≤ a:
Sign a message with ECDSA using private key pm

Merchant gets

• ordered public-keys Q⃗ = (q1, . . . ,qM)
• Signature σ

To Verify a minimum agem:
Verify the ECDSA-Signature σ with public key qm.

19

Instantiation with ECDSA

Child has Q⃗ = (q1, . . . ,qM) and P⃗ = (p1, . . . ,pa,⊥, . . . ,⊥).

To Derive new Q⃗′ and P⃗′: Choose random β ∈ Zg and
calculate

Q⃗′ :=
(
β ∗ q1, . . . , β ∗ qM

)
,

P⃗′ :=
(
βp1, . . . , βpa,⊥, . . . ,⊥

)
Note: (βpi) ∗ G = β ∗ (pi ∗ G) = β ∗ qi
β ∗ qi is scalar multiplication on the elliptic curve.

Exchange gets Q⃗ = (q1, . . . ,qM), Q⃗′ = (q′1, . . . ,q′M) and β

To Compare, calculate: (β ∗ q1, . . . , β ∗ qM)
?
= (q′1, . . . ,q′M)

20

Instantiation with ECDSA

Child has Q⃗ = (q1, . . . ,qM) and P⃗ = (p1, . . . ,pa,⊥, . . . ,⊥).

To Derive new Q⃗′ and P⃗′: Choose random β ∈ Zg and
calculate

Q⃗′ :=
(
β ∗ q1, . . . , β ∗ qM

)
,

P⃗′ :=
(
βp1, . . . , βpa,⊥, . . . ,⊥

)
Note: (βpi) ∗ G = β ∗ (pi ∗ G) = β ∗ qi
β ∗ qi is scalar multiplication on the elliptic curve.

Exchange gets Q⃗ = (q1, . . . ,qM), Q⃗′ = (q′1, . . . ,q′M) and β

To Compare, calculate: (β ∗ q1, . . . , β ∗ qM)
?
= (q′1, . . . ,q′M)

20

Instantiation with ECDSA

Child has Q⃗ = (q1, . . . ,qM) and P⃗ = (p1, . . . ,pa,⊥, . . . ,⊥).

To Derive new Q⃗′ and P⃗′: Choose random β ∈ Zg and
calculate

Q⃗′ :=
(
β ∗ q1, . . . , β ∗ qM

)
,

P⃗′ :=
(
βp1, . . . , βpa,⊥, . . . ,⊥

)
Note: (βpi) ∗ G = β ∗ (pi ∗ G) = β ∗ qi
β ∗ qi is scalar multiplication on the elliptic curve.

Exchange gets Q⃗ = (q1, . . . ,qM), Q⃗′ = (q′1, . . . ,q′M) and β

To Compare, calculate: (β ∗ q1, . . . , β ∗ qM)
?
= (q′1, . . . ,q′M)

20

Instantiation with ECDSA

Functions (Commit, Attest, Verify, Derive, Compare)
as defined in the instantiation with ECDSA

• meet the basic requirements,

• also meet all security requirements.
Proofs by security reduction, details are in the paper.

21

Integration with GNU Taler

GNU Taler

E

C M

wi
th
dr
aw

re
fre
sh

purchase

deposit

• Protocol suite for online payment services
• Based on Chaum’s blind signatures
• Allows for change and refund (F. Dold)
• Privacy preserving: anonymous and
unlinkable payments

• Coins are public-/private key-pairs (Cp, cs).
• Exchange blindly signs FDH(Cp) with denomination key dp
• Verification:

1 ?
= SigCheck

(
FDH(Cp),Dp, σp

)
(Dp = public key of denomination and σp = signature)

22

GNU Taler

E

C M

wi
th
dr
aw

re
fre
sh

purchase

deposit

• Protocol suite for online payment services
• Based on Chaum’s blind signatures
• Allows for change and refund (F. Dold)
• Privacy preserving: anonymous and
unlinkable payments

• Coins are public-/private key-pairs (Cp, cs).
• Exchange blindly signs FDH(Cp) with denomination key dp
• Verification:

1 ?
= SigCheck

(
FDH(Cp),Dp, σp

)
(Dp = public key of denomination and σp = signature)

22

Integration with GNU Taler

To bind an age commitment Q to a coin Cp, instead of signing
FDH(Cp), E now blindly signs

FDH(Cp,H(Q))

Verfication of a coin now requires H(Q), too:

1 ?
= SigCheck

(
FDH(Cp,H(Q)),Dp, σp

)

23

Integration with GNU Taler

C

E

M

G

with
draw

, usi
ng

FDH
(Cp,

H(Q
))

re
fre
sh
+

De
riv
eC
om
pa
re
κ

purchase + (Tm,Q)

deposit +
H
(Q
)

Commit(a)

(Q, P
a)

Attest(m,Q,Pa) Verify(m,Q, Tm)

24

Instantiation with Edx25519

Paper also formally definesanother signature scheme: Edx25519.

• Scheme already in use in GNUnet,
• based on EdDSA (Bernstein et al.),
• generates compatible signatures and
• allows for key derivation from both, private and public
keys, independently.

Current implementationof age restriction inGNUTaler usesEdx25519.

25

Discussion, Related Work,
Conclusion

Discussion

• Our solution can in principle be used with any
token-based payment scheme

• GNU Taler best aligned with our design goals (security,
privacy and efficiency)

• Subsidiarity requires bank accounts being owned by
adults

• Scheme can be adapted to case where minors have bank
accounts

• Assumption: banks provide minimum age information
during bank transactions.

• Child and Exchange execute a variant of the cut&choose
protocol.

• Our scheme offers an alternative to identity management
systems (IMS)

26

Related Work

• Current privacy-perserving systems all based on
attribute-based credentials (Koning et al., Schanzenbach
et al., Camenisch et al., Au et al.)

• Attribute-based approach lacks support:
• Complex for consumers and retailers
• Requires trusted third authority

• Other approaches tie age-restriction to ability to pay
(”debit cards for kids”)

• Advantage: mandatory to payment process
• Not privacy friendly

27

Conclusion

Age restriction is a technical, ethical and legal challenge.

Existing solutions are

• without strong protection of privacy or
• based on identity management systems (IMS)

Our scheme offers a solution that is

• based on subsidiarity
• privacy preserving
• efficient
• an alternative to IMS

28

Thank you! Questions?
oec-taler@kesim.org
@oec@mathstodon.xyz

29

Nothing to see here

	Introduction
	Age Restriction
	Solution/Instantiation
	Integration with GNU Taler
	Discussion, Related Work, Conclusion
	Appendix

