Hacking in Parallel ///

Are you old enough to buy this?

Zero-Knowledge Age Restriction for GNU Taler

Özgür Kesim December 29, 2022

FU Berlin

1. TODO: something something

Introduction

TODO: who am i

Verification of minimum age requirements in e-commerce.

Common solutions:

- 1. ID Verification
- 2. Restricted Accounts
- 3. Attribute-based

Verification of minimum age requirements in e-commerce.

Common solutions:

Privacy

- 1. ID Verification bad
- 2. Restricted Accounts bad
- 3. Attribute-based good

Verification of minimum age requirements in e-commerce.

Common solutions:		
	Privacy	Ext. authority
1. ID Verification	bad	required
2. Restricted Accounts	bad	required
3. Attribute-based	good	required

Verification of minimum age requirements in e-commerce.

Principle of Subsidiarity is violated

Functions of government—such as granting and restricting rights—should be performed *at the lowest level of authority possible,* as long as they can be performed *adequately*. Functions of government—such as granting and restricting rights—should be performed *at the lowest level of authority possible,* as long as they can be performed *adequately*.

For age-restriction, the lowest level of authority is:

Parents, guardians and caretakers

Design and implementation of an age restriction scheme with the following goals:

- 1. It ties age restriction to the **ability to pay** (not to ID's)
- 2. maintains anonymity of buyers
- 3. maintains unlinkability of transactions
- 4. aligns with principle of subsidiartiy
- 5. is practical and efficient

Age Restriction

• Assumption: Checking accounts are under control of eligible adults/guardians.

- Assumption: Checking accounts are under control of eligible adults/guardians.
- Guardians commit to an maximum age

- Assumption: Checking accounts are under control of eligible adults/guardians.
- Guardians commit to an maximum age
- Minors attest their adequate age

Age restriction

- Assumption: Checking accounts are under control of eligible adults/guardians.
- Guardians commit to an maximum age
- Minors attest their adequate age
- Merchants verify the attestations

Age restriction

- Assumption: Checking accounts are under control of eligible adults/guardians.
- Guardians commit to an maximum age
- Minors attest their adequate age
- Merchants verify the attestations
- Minors **derive** age commitments from existing ones

- Assumption: Checking accounts are under control of eligible adults/guardians.
- Guardians commit to an maximum age
- Minors attest their adequate age
- Merchants verify the attestations
- Minors **derive** age commitments from existing ones
- *Exchanges* **compare** the derived age commitments

Age restriction

- Assumption: Checking accounts are under control of eligible adults/guardians.
- *Guardians* **commit** to an maximum age
- Minors attest their adequate age
- Merchants verify the attestations
- Minors **derive** age commitments from existing ones
- *Exchanges* **compare** the derived age commitments

Compare Commit \mathcal{E} \mathcal{C} Attest Derive

Note: Scheme is independent of payment service protocol.

Searching for functions

Commit Attest Verify

Derive

Compare

Commit :	$(a,\omega)\mapsto (Q,P)$	$\mathbb{N}_{M}{\times}\Omega{\rightarrow}\mathbb{O}{\times}\mathbb{P},$
Attest		
Verify		
Derive		
Compare		

Mnemonics:

 $\mathbb{O} = c\mathbb{O}$ *mmitments*, Q = Q*-mitment* (commitment), $\mathbb{P} = \mathbb{P}$ *roofs*,

Commit :	$(a,\omega)\mapsto (Q,P)$	$\mathbb{N}_{M}{\times}\Omega{\rightarrow}\mathbb{O}{\times}\mathbb{P},$
Attest :	$(m,Q,P)\mapstoT$	$\mathbb{N}_M {\times} \mathbb{O} {\times} \mathbb{P} {\rightarrow} \mathbb{T} {\cup} \{ \bot \},$
Verify		
Derive		
Compare		

Mnemonics:

 $\mathbb{O} = c\mathbb{O}$ *mmitments*, Q = Q*-mitment* (commitment), $\mathbb{P} = \mathbb{P}$ *roofs*, P = P*roof*,

 $\mathbb{T} = a\mathbb{T}$ testations, $\mathsf{T} = a\mathsf{T}$ testation,

Commit :	$(a,\omega)\mapsto (Q,P)$	$\mathbb{N}_{M} {\times} \Omega {\rightarrow} \mathbb{O} {\times} \mathbb{P},$
Attest :	$(m,Q,P)\mapstoT$	$\mathbb{N}_M {\times} \mathbb{O} {\times} \mathbb{P} {\rightarrow} \mathbb{T} {\cup} \{ \bot \},$
Verify :	$(m,Q,T)\mapsto b$	$\mathbb{N}_M \!\times\! \mathbb{O} \!\times\! \mathbb{T} \!\rightarrow\! \mathbb{Z}_2,$
Derive		
Compare		

Mnemonics:

 $\mathbb{O} = c\mathbb{O}$ *mmitments*, Q = Q*-mitment* (commitment), $\mathbb{P} = \mathbb{P}$ *roofs*, P = P*roof*,

 $\mathbb{T} = a\mathbb{T}$ testations, $\mathsf{T} = a\mathsf{T}$ testation,

Commit :	$(a,\omega)\mapsto (Q,P)$	$\mathbb{N}_{M}{\times}\Omega{\rightarrow}\mathbb{O}{\times}\mathbb{P},$
Attest :	$(m,Q,P)\mapstoT$	$\mathbb{N}_M \!\times\! \mathbb{O} \!\times\! \mathbb{P} \!\!\rightarrow\! \mathbb{T} \!\cup\! \{\bot\},$
Verify :	$(m,Q,T)\mapsto b$	$\mathbb{N}_M \!\times\! \mathbb{O} \!\times\! \mathbb{T} \!\!\rightarrow\! \mathbb{Z}_2,$
Derive :	$(Q,P,\omega)\mapsto (Q',P',\beta)$	$\mathbb{O}{\times}\mathbb{P}{\times}\Omega{\rightarrow}\mathbb{O}{\times}\mathbb{P}{\times}\mathbb{B},$
Compare		

Mnemonics:

 $\mathbb{O} = c\mathbb{O}$ *mmitments*, Q = Q*-mitment* (commitment), $\mathbb{P} = \mathbb{P}$ *roofs*, P = P*roof*,

 $\mathbb{T} = a\mathbb{T}$ testations, $\mathsf{T} = a\mathsf{T}$ testation, $\mathbb{B} = \mathbb{B}$ lindings, $\beta = \beta$ linding.

Commit :	$(a,\omega)\mapsto (Q,P)$	$\mathbb{N}_{M}{\times}\Omega{\rightarrow}\mathbb{O}{\times}\mathbb{P},$
Attest :	$(m,Q,P)\mapstoT$	$\mathbb{N}_M \!\times\! \mathbb{O} \!\times\! \mathbb{P} \!\!\rightarrow\! \mathbb{T} \!\cup\! \{\bot\},$
Verify :	$(m,Q,T)\mapsto b$	$\mathbb{N}_M \!\times\! \mathbb{O} \!\times\! \mathbb{T} \!\!\rightarrow\! \mathbb{Z}_2,$
Derive :	$(Q,P,\omega)\mapsto (Q',P',\beta)$	$\mathbb{O}{\times}\mathbb{P}{\times}\Omega{\rightarrow}\mathbb{O}{\times}\mathbb{P}{\times}\mathbb{B},$
Compare :	$(Q,Q',eta)\mapsto b$	$\mathbb{O}\!\times\!\mathbb{O}\!\times\!\mathbb{B}\!\!\rightarrow\!\!\mathbb{Z}_2,$

Mnemonics:

 $\mathbb{O} = c\mathbb{O}\textit{mmitments}, \ \mathsf{Q} = \textit{Q-mitment} \ (\textit{commitment}), \ \mathbb{P} = \mathbb{P}\textit{roofs}, \ \ \mathsf{P} = \textit{Proof},$

 $\mathbb{T} = a\mathbb{T}$ testations, $\mathbb{T} = a\mathbb{T}$ testation, $\mathbb{B} = \mathbb{B}$ lindings, $\beta = \beta$ linding.

Commit :	$(a,\omega)\mapsto (Q,P)$	$\mathbb{N}_{M} {\times} \Omega {\rightarrow} \mathbb{O} {\times} \mathbb{P},$
Attest :	$(m,Q,P)\mapstoT$	$\mathbb{N}_M \times \mathbb{O} \times \mathbb{P} {\rightarrow} \mathbb{T} {\cup} \{ \bot \},$
Verify :	$(m,Q,T)\mapsto b$	$\mathbb{N}_M \!\times\! \mathbb{O} \!\times\! \mathbb{T} \!\!\rightarrow\! \mathbb{Z}_2,$
Derive :	$(Q,P,\omega)\mapsto (Q',P',\beta)$	$\mathbb{O}{\times}\mathbb{P}{\times}\Omega{\rightarrow}\mathbb{O}{\times}\mathbb{P}{\times}\mathbb{B},$
Compare :	$(Q,Q',eta)\mapsto b$	$\mathbb{O}{\times}\mathbb{O}{\times}\mathbb{B}{\rightarrow}\mathbb{Z}_2,$

with $\Omega, \mathbb{P}, \mathbb{O}, \mathbb{T}, \mathbb{B}$ sufficiently large sets.

Basic and security requirements are defined later.

Mnemonics: $\mathbb{O} = c\mathbb{O}$ *mmitments*, $\mathbb{Q} = Q$ *-mitment* (commitment), $\mathbb{P} = \mathbb{P}$ *roofs*, $\mathbb{P} = P$ *roof*, $\mathbb{T} = a\mathbb{T}$ *testations*, $\mathbb{T} = a$ *Ttestation*, $\mathbb{B} = \mathbb{B}$ *lindings*, $\beta = \beta$ *linding*.

Simple use of Derive() and Compare() is problematic.

Simple use of Derive() and Compare() is problematic.

- Calling Derive() iteratively generates sequence (Q_0, Q_1, \dots) of commitments.
- Exchange calls Compare(Q_i, Q_{i+1}, .)

Simple use of Derive() and Compare() is problematic.

- Calling Derive() iteratively generates sequence (Q_0, Q_1, \dots) of commitments.
- Exchange calls Compare(Q_i, Q_{i+1}, .)
- \implies Exchange identifies sequence
 - \Rightarrow Unlinkability broken

Define cut&choose protocol DeriveCompare_{κ}, using Derive() and Compare().

Define cut&choose protocol DeriveCompare_{*k*}, using Derive() and Compare().

Sketch:

- C derives commitments (Q₁,..., Q_κ) from Q₀ by calling Derive() with blindings (β₁,..., β_κ)
- 2. C calculates $h_0 := H(H(Q_1, \beta_1)|| \dots ||H(Q_{\kappa}, \beta_{\kappa}))$
- 3. C sends Q_0 and h_0 to E
- 4. \mathcal{E} chooses $\gamma \in \{1, \dots, \kappa\}$ randomly
- 5. C reveals $h_{\gamma} := H(Q_{\gamma}, \beta_{\gamma})$ and all (Q_i, β_i) , except $(Q_{\gamma}, \beta_{\gamma})$
- 6. \mathcal{E} compares h_0 and $H(H(Q_1, \beta_1)||...||h_{\gamma}||...||H(Q_{\kappa}, \beta_{\kappa}))$ and evaluates Compare (Q_0, Q_i, β_i) .

Note: Scheme is similar to the *refresh* protocol in GNU Taler.

With DeriveCompare_k

- + ${\cal E}$ learns nothing about Q_{γ} ,
- trusts outcome with $\frac{\kappa-1}{\kappa}$ certainty,
- i.e. C has $\frac{1}{\kappa}$ chance to cheat.

Note: Still need Derive and Compare to be defined.

Candidate functions

(Commit, Attest, Verify, Derive, Compare)

must first meet *basic* requirements:

- Existence of attestations
- · Efficacy of attestations
- Derivability of commitments and attestations

Existence of attestations

$$\bigvee_{\substack{a \in \mathbb{N}_m \\ \omega \in \Omega}} : \text{Commit}(a, \omega) =: (Q, P) \implies \text{Attest}(m, Q, P) = \begin{cases} T \in \mathbb{T}, \text{ if } m \leq a \\ \bot \text{ otherwise} \end{cases}$$

Efficacy of attestations

$$Verify(m,Q,T) = \begin{cases} 1, \text{if } \exists : Attest(m,Q,P) = T \\ P \in \mathbb{P} \\ 0 \text{ otherwise} \end{cases}$$

 $\forall_{n \leq a} : Verify(n, Q, Attest(n, Q, P)) = 1.$

etc.

Candidate functions must also meet *security* requirements. Those are defined via security games:

- Game: Age disclosure by commitment or attestation
- \leftrightarrow Requirement: Non-disclosure of age
 - Game: Forging attestation
- $\leftrightarrow \ \text{Requirement: Unforgeability of minimum age}$
 - Game: Distinguishing derived commitments and attestations
- ↔ Requirement: Unlinkability of commitments and attestations

Meeting the security requirements means that adversaries can win those games only with negligible advantage.

Adversaries are arbitrary polynomial-time algorithms, acting on all relevant input.

Game $G_{\mathcal{A}}^{\mathrm{FA}}(\lambda)$ —Forging an attest:

1.
$$(a, \omega) \stackrel{\$}{\leftarrow} \mathbb{N}_{M-1} \times \Omega$$

- 2. $(Q, P) \leftarrow Commit(a, \omega)$
- 3. $(m,T) \leftarrow \mathcal{A}(a,Q,P)$
- 4. Return 0 if $m \le a$
- 5. Return Verify(m,Q,T)

Requirement: Unforgeability of minimum age

$$\bigvee_{\mathcal{A}\in\mathfrak{A}(\mathbb{N}_{M}\times\mathbb{O}\times\mathbb{P}\to\mathbb{N}_{M}\times\mathbb{T})}:\Pr\Big[G_{\mathcal{A}}^{\mathsf{FA}}(\lambda)=1\Big]\leq\epsilon(\lambda)$$

Solution/Instantiation

1. Guardian generates ECDSA-keypairs, one per age (group):

$$\langle (q_1, p_1), \ldots, (q_M, p_M) \rangle$$

1. Guardian generates ECDSA-keypairs, one per age (group):

$$\langle (q_1, p_1), \ldots, (q_M, p_M) \rangle$$

2. Guardian then **drops** all private keys p_i for i > a:

$$\left\langle (q_1, p_1), \ldots, (q_a, p_a), (q_{a+1}, \bot), \ldots, (q_M, \bot) \right\rangle$$

•
$$\vec{\mathsf{Q}} := (q_1, \dots, q_M)$$
 is the Commitment,
• $\vec{\mathsf{P}}_a := (p_1, \dots, p_a, \bot, \dots, \bot)$ is the Proof

 Guardian generates ECDSA-keypairs, one per age (group):

$$\langle (q_1, p_1), \ldots, (q_M, p_M) \rangle$$

2. Guardian then **drops** all private keys p_i for i > a:

$$\left\langle (q_1, p_1), \ldots, (q_a, p_a), (q_{a+1}, \bot), \ldots, (q_M, \bot) \right\rangle$$

Q
 ⁱ := (q₁,...,q_M) is the *Commitment*,
P
 ⁱ a := (p₁,...,p_a,⊥,...,⊥) is the *Proof*

3. Guardian gives child $\langle \vec{Q}, \vec{P}_a \rangle$

Child has

- ordered public-keys $ec{\mathsf{Q}} = (q_1, \ldots, q_{\mathsf{M}})$,
- (some) private-keys $\vec{P} = (p_1, \dots, p_a, \bot, \dots, \bot)$.

Child has

- ordered public-keys $ec{\mathsf{Q}} = (q_1, \ldots, q_{\mathsf{M}})$,
- (some) private-keys $\vec{P} = (p_1, \dots, p_a, \bot, \dots, \bot)$.

To Attest a minimum age $m \le a$:

Sign a message with ECDSA using private key p_m

Child has

- ordered public-keys $ec{\mathsf{Q}} = (q_1, \ldots, q_{\mathsf{M}})$,
- (some) private-keys $\vec{P} = (p_1, \dots, p_a, \bot, \dots, \bot)$.

To Attest a minimum age $m \le a$:

Sign a message with ECDSA using private key p_m

Merchant gets

- ordered public-keys $\vec{\mathsf{Q}} = (q_1, \ldots, q_{\mathsf{M}})$
- Signature σ

Child has

- ordered public-keys $ec{\mathsf{Q}} = (q_1, \ldots, q_{\mathsf{M}})$,
- (some) private-keys $\vec{P} = (p_1, \dots, p_a, \bot, \dots, \bot)$.

To Attest a minimum age $m \le a$:

Sign a message with ECDSA using private key p_m

Merchant gets

- ordered public-keys $\vec{\mathsf{Q}} = (q_1, \ldots, q_{\mathsf{M}})$
- Signature σ

To Verify a minimum age m:

Verify the ECDSA-Signature σ with public key $q_{\rm m}$.

Child has $\vec{Q} = (q_1, \dots, q_M)$ and $\vec{P} = (p_1, \dots, p_a, \bot, \dots, \bot)$.

Child has $\vec{Q} = (q_1, \dots, q_M)$ and $\vec{P} = (p_1, \dots, p_a, \bot, \dots, \bot)$.

To Derive new $\vec{Q'}$ and $\vec{P'}$: Choose random $\beta \in \mathbb{Z}_g$ and calculate

$$ar{\mathsf{Q}}' := ig(eta * q_1, \dots, eta * q_Mig), \ ar{\mathsf{P}}' := ig(eta p_1, \dots, eta p_a, \bot, \dots, \botig)$$

Note: $(\beta p_i) * G = \beta * (p_i * G) = \beta * q_i$

 $\beta * q_i$ is scalar multiplication on the elliptic curve.

Child has $\vec{Q} = (q_1, \dots, q_M)$ and $\vec{P} = (p_1, \dots, p_a, \bot, \dots, \bot)$.

To Derive new $\vec{Q'}$ and $\vec{P'}$: Choose random $\beta \in \mathbb{Z}_g$ and calculate

$$\begin{split} \vec{\mathsf{Q}}' &:= \left(\beta * q_{1}, \dots, \beta * q_{\mathsf{M}}\right), \\ \vec{\mathsf{P}}' &:= \left(\beta p_{1}, \dots, \beta p_{\mathsf{a}}, \bot, \dots, \bot\right) \end{split}$$

Note: $(\beta p_i) * G = \beta * (p_i * G) = \beta * q_i$

 $\beta * q_i$ is scalar multiplication on the elliptic curve.

Exchange gets $\vec{Q} = (q_1, \dots, q_M)$, $\vec{Q}' = (q'_1, \dots, q'_M)$ and β **To Compare, calculate:** $(\beta * q_1, \dots, \beta * q_M) \stackrel{?}{=} (q'_1, \dots, q'_M)$ Functions (Commit, Attest, Verify, Derive, Compare) as defined in the instantiation with ECDSA

- meet the basic requirements,
- also meet all security requirements. Proofs by security reduction, details are in the paper.

Integration with GNU Taler

GNU Taler

- Protocol suite for online payment services
- Based on Chaum's blind signatures
- Allows for change and refund (F. Dold)
- Privacy preserving: anonymous and unlinkable payments

GNU Taler

- Protocol suite for online payment services
- Based on Chaum's blind signatures
- Allows for change and refund (F. Dold)
- Privacy preserving: anonymous and unlinkable payments
- Coins are public-/private key-pairs (C_p, c_s).
- Exchange blindly signs $FDH(C_p)$ with denomination key d_p
- Verification:

$$1 \stackrel{?}{=} \operatorname{SigCheck}(\operatorname{FDH}(C_p), D_p, \sigma_p)$$

(D_{ρ} = public key of denomination and σ_{ρ} = signature)

To bind an age commitment Q to a coin C_p , instead of signing FDH(C_p), \mathcal{E} now blindly signs

 $FDH(C_p, H(Q))$

Verfication of a coin now requires H(Q), too:

 $1 \stackrel{?}{=} \mathsf{SigCheck}(\mathsf{FDH}(C_p, H(Q)), D_p, \sigma_p)$

Integration with GNU Taler

Paper also formally defines another signature scheme: Edx25519.

- Scheme already in use in GNUnet,
- based on EdDSA (Bernstein et al.),
- generates compatible signatures and
- allows for key derivation from both, private and public keys, independently.

Current implementation of age restriction in GNU Taler uses Edx25519

Discussion, Related Work, Conclusion

Discussion

- Our solution can in principle be used with any token-based payment scheme
- GNU Taler best aligned with our design goals (security, privacy and efficiency)
- Subsidiarity requires bank accounts being owned by adults
 - Scheme can be adapted to case where minors have bank accounts
 - Assumption: banks provide minimum age information during bank transactions.
 - Child and Exchange execute a variant of the cut&choose protocol.
- Our scheme offers an alternative to identity management systems (IMS)

- Current privacy-perserving systems all based on attribute-based credentials (Koning et al., Schanzenbach et al., Camenisch et al., Au et al.)
- Attribute-based approach lacks support:
 - Complex for consumers and retailers
 - Requires trusted third authority
- Other approaches tie age-restriction to ability to pay ("debit cards for kids")
 - Advantage: mandatory to payment process
 - Not privacy friendly

Age restriction is a technical, ethical and legal challenge. Existing solutions are

- · without strong protection of privacy or
- based on identity management systems (IMS)

Our scheme offers a solution that is

- based on subsidiarity
- privacy preserving
- efficient
- an alternative to IMS

Thank you! Questions?

oec-taler@kesim.org

@oec@mathstodon.xyz

Nothing to see here