final touches
This commit is contained in:
parent
95907445c0
commit
b55a190875
@ -439,7 +439,7 @@ Searching for functions \uncover<2->{with the following signatures}
|
||||
\item generates $(\commitment_1,\dots,\commitment_\kappa)$
|
||||
and $(\beta_1,\dots,\beta_\kappa)$ from $\commitment_0$\\
|
||||
by calling $\kappa$ times $\Derive(\commitment_0, \pruf_0, \omega_i)$
|
||||
\item calculates $h_0:=H\left(H(\commitment_1, \beta_1)||\dots||H(\commitment_\kappa, \beta_\kappa)\right)$
|
||||
\item calculates $h_0:=H\left(H(\commitment_1, \beta_1)\parallel \dots\parallel H(\commitment_\kappa, \beta_\kappa)\right)$
|
||||
\item sends $\commitment_0$ and $h_0$ to $\Exchange$
|
||||
\end{enumerate}
|
||||
\item[$\Exchange$:]
|
||||
@ -453,7 +453,7 @@ Searching for functions \uncover<2->{with the following signatures}
|
||||
\item[$\Exchange$:]
|
||||
\begin{enumerate}
|
||||
\item[6.] compares $h_0$ and
|
||||
$H\left(H(\commitment_1, \beta_1)||...||h_\gamma||...||H(\commitment_\kappa, \beta_\kappa)\right)$
|
||||
$H\left(H(\commitment_1, \beta_1)\parallel ...\parallel h_\gamma\parallel ...\parallel H(\commitment_\kappa, \beta_\kappa)\right)$
|
||||
\item[7.] evaluates $\Compare(\commitment_0, \commitment_i, \beta_i)$ for all $i \neq \gamma$.
|
||||
\end{enumerate}
|
||||
\end{itemize}
|
||||
@ -710,7 +710,7 @@ Searching for functions \uncover<2->{with the following signatures}
|
||||
\begin{description}
|
||||
\item<2->[To \blue{Attest} a minimum age (group) $\blue{\minage} \leq \age$:]~\\
|
||||
Sign a message with ECDSA using private key
|
||||
$p_\blue{\minage}$. The signature $\sigma$ is the
|
||||
$p_\blue{\minage}$. The signature $\sigma_\blue{\minage}$ is the
|
||||
attestation.
|
||||
\end{description}
|
||||
|
||||
@ -720,11 +720,11 @@ Searching for functions \uncover<2->{with the following signatures}
|
||||
Merchant gets
|
||||
\begin{itemize}
|
||||
\item ordered public-keys $\Vcommitment = (q_1, \dots, q_\Age) $
|
||||
\item Signature $\sigma$
|
||||
\item Signature $\sigma_\blue{\minage}$
|
||||
\end{itemize}
|
||||
\begin{description}
|
||||
\item<4->[To \blue{Verify} a minimum age (group) $\minage$:]~\\
|
||||
Verify the ECDSA-Signature $\sigma$ with public key $q_\minage$.
|
||||
\item<4->[To \blue{Verify} a minimum age (group) \blue{$\minage$}:]~\\
|
||||
Verify the ECDSA-Signature $\sigma_\blue{\minage}$ with public key $q_\blue{\minage}$.
|
||||
\end{description}
|
||||
}
|
||||
\vfill
|
||||
@ -785,15 +785,15 @@ Searching for functions \uncover<2->{with the following signatures}
|
||||
\begin{minipage}{\textwidth}
|
||||
\tiny
|
||||
\begin{description}
|
||||
\item[Game $\Game{FA}(\lambda)$: Forging an attest]~\\
|
||||
1. $(\age, \omega) \drawfrom \N_{\Age-1}\times\Omega(\lambda) $\\
|
||||
\item[Game $\Game{FA}$: Forging an attest]~\\
|
||||
1. $(\age, \omega) \drawfrom \N_{\Age-1}\times\Omega $\\
|
||||
2. $(\commitment, \pruf) \leftarrow \Commit(\age, \omega) $\\
|
||||
3. $(\minage, \attest) \leftarrow \Adv(\age, \commitment, \pruf)$\\
|
||||
4. Return 0 if $\minage \leq \age$\\
|
||||
5. Return $\Verify(\minage,\commitment,\attest)$\\
|
||||
\vfill
|
||||
\item[Requirement:]~\\
|
||||
$\Forall_{\Adv}: \Probability\Big[\Game{FA}(\lambda) = 1\Big] \le \negl(\lambda)$
|
||||
$\Forall_{\Adv}: \Probability\Big[\Game{FA} = 1\Big] \le \negl$
|
||||
\end{description}
|
||||
\end{minipage}
|
||||
\column{0.7\textwidth}
|
||||
@ -905,17 +905,16 @@ Searching for functions \uncover<2->{with the following signatures}
|
||||
\label{fr:bindingToCoins}
|
||||
|
||||
To bind an age commitment $\commitment$ to a coin $C_p$, instead of
|
||||
signing $H(C_p)$, $\Exchange$ now \hyperlink{fr:reminderBlindSignature}{blindly signs}
|
||||
\begin{center}
|
||||
$H(C_p, \orange{H(\commitment)})$
|
||||
\end{center}
|
||||
blindly signing \[ H(C_p), \]
|
||||
$\Exchange$ now \hyperlink{fr:reminderBlindSignature}{blindly signs}
|
||||
\[ H\left(C_p\parallel\orange{H(\commitment)}\right) \]
|
||||
|
||||
\vfill
|
||||
Verfication of a coin now requires $H(\commitment)$, too:
|
||||
\begin{center}
|
||||
$1 \stackrel{?}{=}
|
||||
\mathsf{SigCheck}\big(H(C_p, \orange{H(\commitment)}), D_p, \sigma_p\big)$
|
||||
\end{center}
|
||||
Therefore, verfication of a coin now requires $H(\commitment)$, too:
|
||||
\[
|
||||
1 \stackrel{?}{=}
|
||||
\mathsf{SigCheck}\big(H\left(C_p\parallel\orange{H(\commitment)}\right), D_p, \sigma_p\big)
|
||||
\]
|
||||
\vfill
|
||||
\end{frame}
|
||||
|
||||
@ -929,7 +928,7 @@ Searching for functions \uncover<2->{with the following signatures}
|
||||
\node[circle,minimum size=25pt,fill=blue!15] at (130:3) (Guardian) {$\Guardian$};
|
||||
|
||||
\draw[<->] (Guardian) to node[sloped,above,align=center]
|
||||
{{\sf withdraw}\orange{, using}\\ $H(C_p\orange{, H(\commitment)})$} (Exchange);
|
||||
{{\sf withdraw}\orange{, using}\\ $H(C_p\orange{\parallel H(\commitment)})$} (Exchange);
|
||||
\draw[<->] (Client) to node[sloped,below,align=center]
|
||||
{{\sf refresh} \orange{ + }\\ \orange{$\DeriveCompare$}} (Exchange);
|
||||
\draw[<->] (Client) to node[sloped, below]
|
||||
@ -1108,14 +1107,15 @@ Searching for functions \uncover<2->{with the following signatures}
|
||||
\end{itemize}
|
||||
\item[B:]
|
||||
\begin{itemize}
|
||||
\item signs $m'$ by $\sigma' := m'^d \mod N$ {\hfill \scriptsize \textit{(B doesn't know $m$)}}
|
||||
\item signs $m'$, by calculating
|
||||
$\sigma' := (m')^d \mod N$ {\hfill \scriptsize \textit{(B doesn't learn $m$)}}
|
||||
\item sends $\sigma'$ to A.
|
||||
\item[] \scriptsize Note: $m'^d = (m*b^e)^d = m^d*b^{ed} = m^d*b \mod N$
|
||||
\item[] \scriptsize Note: $(m')^d = (m*b^e)^d = m^d*b^{ed} = m^d*b \mod N$
|
||||
\end{itemize}
|
||||
\item[A:]\begin{itemize}
|
||||
\item unblinds $\sigma'$ by calculating
|
||||
\[ \sigma := \sigma'*b^{-1} (= m^d) \]
|
||||
\item[]$\sigma$ is a valid RSA signature to message $m$.
|
||||
\item[$\implies$]$\sigma$ is a valid RSA signature to message $m$.
|
||||
\end{itemize}
|
||||
\end{itemize}
|
||||
\hfill \tiny back to \hyperlink{fr:GnuTaler}{\textit{taler}} or \hyperlink{fr:bindingToCoins}{\textit{binding}}
|
||||
|
Loading…
Reference in New Issue
Block a user