/*
This file is part of TALER
Copyright (C) 2014, 2015, 2016 GNUnet e.V. and INRIA
TALER is free software; you can redistribute it and/or modify it under the
terms of the GNU Lesser General Public License as published by the Free Software
Foundation; either version 2.1, or (at your option) any later version.
TALER is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License along with
TALER; see the file COPYING.LGPL. If not, If not, see
*/
/**
* @file src/benchmark/taler-exchange-benchmark.c
* @brief exchange's benchmark
* @author Marcello Stanisci
*/
#include "platform.h"
#include "taler_util.h"
#include "taler_signatures.h"
#include "taler_exchange_service.h"
#include "taler_json_lib.h"
#include
#include
#include
/**
* How many coins the benchmark should operate on
*/
static unsigned int pool_size = 100;
/**
* How many reservers ought to be created given the pool size
*/
static unsigned int nreserves;
/**
* Needed information for a reserve. Other values are the same for all reserves, therefore defined in global variables
*/
struct Reserve {
/**
* Set (by the interpreter) to the reserve's private key
* we used to fill the reserve.
*/
struct TALER_ReservePrivateKeyP reserve_priv;
/**
* Set to the API's handle during the operation.
*/
struct TALER_EXCHANGE_AdminAddIncomingHandle *aih;
};
/**
* Information regarding a coin; for simplicity, every
* withdrawn coin is EUR 1
*/
struct Coin {
/**
* Index in the reserve's global array indicating which
* reserve this coin is to be retrieved
*/
unsigned int reserve_index;
/**
* If @e amount is NULL, this specifies the denomination key to
* use. Otherwise, this will be set (by the interpreter) to the
* denomination PK matching @e amount.
*/
const struct TALER_EXCHANGE_DenomPublicKey *pk;
/**
* Set (by the interpreter) to the exchange's signature over the
* coin's public key.
*/
struct TALER_DenominationSignature sig;
/**
* Set (by the interpreter) to the coin's private key.
*/
struct TALER_CoinSpendPrivateKeyP coin_priv;
/**
* Blinding key used for the operation.
*/
struct TALER_DenominationBlindingKeyP blinding_key;
/**
* Withdraw handle (while operation is running).
*/
struct TALER_EXCHANGE_ReserveWithdrawHandle *wsh;
};
/**
* Context for running the #ctx's event loop.
*/
static struct GNUNET_CURL_RescheduleContext *rc;
/**
* Benchmark's task
*/
struct GNUNET_SCHEDULER_Task *benchmark_task;
/**
* Main execution context for the main loop of the exchange.
*/
static struct GNUNET_CURL_Context *ctx;
/**
* Handle to access the exchange.
*/
static struct TALER_EXCHANGE_Handle *exchange;
/**
* The array of all reserves
*/
static struct Reserve *reserves;
/**
* The array of all coins
*/
static struct Coin *coins;
/**
* URI under which the exchange is reachable during the benchmark.
*/
#define EXCHANGE_URI "http://localhost:8081"
/**
* How many coins (AKA withdraw operations) per reserve should be withdrawn
*/
#define COINS_PER_RESERVE 12
static void
do_shutdown(void *cls);
/**
* Function called upon completion of our /admin/add/incoming request.
*
* @param cls closure with the interpreter state
* @param http_status HTTP response code, #MHD_HTTP_OK (200) for successful status request
* 0 if the exchange's reply is bogus (fails to follow the protocol)
* @param full_response full response from the exchange (for logging, in case of errors)
*/
static void
add_incoming_cb (void *cls,
unsigned int http_status,
const json_t *full_response)
{
/**
* FIXME pick a way to get the "current" reserve index. It's also possible to
* NOT use a traditional 'for' loop in the reserve creation function, but rather
* an iterator which makes use of a global "state" of the operations, as happens
* in test_merchant_api with 'struct InterpreterState' (look at how its 'ip' field
* is used).
* For now, just operate on the first reserve in order to get the coins' scaffold
* defined and compiled
*/
/**
* 0 set NULL the reserve handler for this call (otherwise do_shutdown() segfaults
* when attempting to cancel this operation, which cannot since has been served)
* 1 Check if reserve got correctly created
* 2 Define per-coin stuff
*/
GNUNET_log (GNUNET_ERROR_TYPE_INFO, "/admin/add/incoming callback called\n");
return;
}
/**
* Run the main interpreter loop that performs exchange operations.
*
* @param cls closure for benchmark_run()
*/
static void
benchmark_run (void *cls)
{
unsigned int i;
struct GNUNET_CRYPTO_EddsaPrivateKey *priv;
json_t *transfer_details;
json_t *sender_details;
char *uuid;
struct TALER_ReservePublicKeyP reserve_pub;
struct GNUNET_TIME_Absolute execution_date;
struct TALER_Amount reserve_amount;
TALER_string_to_amount ("EUR:24", &reserve_amount);
/* FIXME bank_uri to be tuned to exchange's tastes */
sender_details = json_loads ("{ \"type\":\"test\", \"bank_uri\":\"http://localhost/\", \"account_number\":62}",
JSON_REJECT_DUPLICATES,
NULL);
execution_date = GNUNET_TIME_absolute_get ();
GNUNET_TIME_round_abs (&execution_date);
GNUNET_log (GNUNET_ERROR_TYPE_INFO, "benchmark_run() invoked\n");
GNUNET_log (GNUNET_ERROR_TYPE_INFO, "gotten pool_size of %d\n", pool_size);
nreserves = pool_size / COINS_PER_RESERVE;
GNUNET_log (GNUNET_ERROR_TYPE_INFO, "creating %d reserves\n", nreserves);
reserves = GNUNET_malloc (nreserves * sizeof (struct Reserve));
coins = GNUNET_malloc (COINS_PER_RESERVE * nreserves * sizeof (struct Coin));
/* reserves */
for (i=0;i < nreserves && 0 < nreserves;i++)
{
priv = GNUNET_CRYPTO_eddsa_key_create ();
reserves[i].reserve_priv.eddsa_priv = *priv;
GNUNET_free (priv);
GNUNET_asprintf (&uuid, "{ \"uuid\":%d}", i);
transfer_details = json_loads (uuid, JSON_REJECT_DUPLICATES, NULL);
GNUNET_free (uuid);
GNUNET_CRYPTO_eddsa_key_get_public (&reserves[i].reserve_priv.eddsa_priv,
&reserve_pub.eddsa_pub);
reserves[i].aih = TALER_EXCHANGE_admin_add_incoming (exchange,
&reserve_pub,
&reserve_amount,
execution_date,
sender_details,
transfer_details,
add_incoming_cb,
NULL);
GNUNET_assert (NULL != reserves[i].aih);
printf (".\n");
json_decref (transfer_details);
}
json_decref (sender_details);
/* coins */
GNUNET_log (GNUNET_ERROR_TYPE_INFO, "benchmark_run() returns\n");
// GNUNET_SCHEDULER_shutdown ();
return;
}
/**
* Functions of this type are called to provide the retrieved signing and
* denomination keys of the exchange. No TALER_EXCHANGE_*() functions should be called
* in this callback.
*
* @param cls closure
* @param keys information about keys of the exchange
*/
static void
cert_cb (void *cls,
const struct TALER_EXCHANGE_Keys *keys)
{
/* check that keys is OK */
#define ERR(cond) do { if(!(cond)) break; GNUNET_break (0); GNUNET_SCHEDULER_shutdown(); return; } while (0)
ERR (NULL == keys);
ERR (0 == keys->num_sign_keys);
GNUNET_log (GNUNET_ERROR_TYPE_DEBUG,
"Read %u signing keys\n",
keys->num_sign_keys);
ERR (0 == keys->num_denom_keys);
GNUNET_log (GNUNET_ERROR_TYPE_DEBUG,
"Read %u denomination keys\n",
keys->num_denom_keys);
#undef ERR
/* run actual tests via interpreter-loop */
GNUNET_log (GNUNET_ERROR_TYPE_INFO,
"Certificate callback invoked, invoking benchmark_run()\n");
benchmark_task = GNUNET_SCHEDULER_add_now (&benchmark_run,
NULL);
}
/**
* Function run when the test terminates (good or bad).
* Cleans up our state.
*
* @param cls the interpreter state.
*/
static void
do_shutdown (void *cls)
{
unsigned int i;
if (NULL != exchange)
{
TALER_EXCHANGE_disconnect (exchange);
exchange = NULL;
}
if (NULL != ctx)
{
GNUNET_CURL_fini (ctx);
ctx = NULL;
}
if (NULL != rc)
{
GNUNET_CURL_gnunet_rc_destroy (rc);
rc = NULL;
}
/**
* WARNING: all the non NULL handles must correspond to non completed
* calls (AKA calls for which the callback function has not been called).
* If not, it segfaults
*/
for (i=0; i