use U instead of B^{-1} as it is not a strict inverse

This commit is contained in:
Christian Grothoff 2015-10-01 15:22:19 +02:00
parent 45fe8a52e6
commit e2f988b995

View File

@ -697,7 +697,7 @@ the mint:
and then sends $S_{K}(B_b(C_p))$ to the customer.
If the guards for the transaction fail, the mint sends a descriptive error back to the customer,
with proof that it operated correctly (i.e. by showing the transaction history for the reserve).
\item The customer computes (and verifies) the unblinded signature $S_K(C_p) = B^{-1}_b(S_K(B_b(C_p)))$.
\item The customer computes (and verifies) the unblinded signature $S_K(C_p) = U_b(S_K(B_b(C_p)))$.
The customer writes $\langle S_K(C_p), c_s \rangle$ to disk (effectively adding the coin to the
local wallet) for future use.
\end{enumerate}
@ -1359,7 +1359,7 @@ indicate the application of a function $f$ to one or more arguments.
\item[$K$]{Public-priate (RSA) coin signing key pair $K := (K_s, K_p)$}
\item[$b$]{RSA blinding factor for RSA-style blind signatures}
\item[$B_b()$]{RSA blinding over the argument using blinding factor $b$}
\item[$B^{-1}_b()$]{RSA unblinding of the argument using blinding factor $b$, inverse of $B_b()$}
\item[$U_b()$]{RSA unblinding of the argument using blinding factor $b$}
\item[$S_K()$]{Chaum-style RSA signature, commutes with blinding operation $B_b()$}
\item[$w_s$]{Private key from customer for authentication}
\item[$W_p$]{Public key corresponding to $w_s$}