use U instead of B^{-1} as it is not a strict inverse
This commit is contained in:
parent
45fe8a52e6
commit
e2f988b995
@ -697,7 +697,7 @@ the mint:
|
||||
and then sends $S_{K}(B_b(C_p))$ to the customer.
|
||||
If the guards for the transaction fail, the mint sends a descriptive error back to the customer,
|
||||
with proof that it operated correctly (i.e. by showing the transaction history for the reserve).
|
||||
\item The customer computes (and verifies) the unblinded signature $S_K(C_p) = B^{-1}_b(S_K(B_b(C_p)))$.
|
||||
\item The customer computes (and verifies) the unblinded signature $S_K(C_p) = U_b(S_K(B_b(C_p)))$.
|
||||
The customer writes $\langle S_K(C_p), c_s \rangle$ to disk (effectively adding the coin to the
|
||||
local wallet) for future use.
|
||||
\end{enumerate}
|
||||
@ -1359,7 +1359,7 @@ indicate the application of a function $f$ to one or more arguments.
|
||||
\item[$K$]{Public-priate (RSA) coin signing key pair $K := (K_s, K_p)$}
|
||||
\item[$b$]{RSA blinding factor for RSA-style blind signatures}
|
||||
\item[$B_b()$]{RSA blinding over the argument using blinding factor $b$}
|
||||
\item[$B^{-1}_b()$]{RSA unblinding of the argument using blinding factor $b$, inverse of $B_b()$}
|
||||
\item[$U_b()$]{RSA unblinding of the argument using blinding factor $b$}
|
||||
\item[$S_K()$]{Chaum-style RSA signature, commutes with blinding operation $B_b()$}
|
||||
\item[$w_s$]{Private key from customer for authentication}
|
||||
\item[$W_p$]{Public key corresponding to $w_s$}
|
||||
|
Loading…
Reference in New Issue
Block a user