use U instead of B^{-1} as it is not a strict inverse

This commit is contained in:
Christian Grothoff 2015-10-01 15:22:19 +02:00
parent 45fe8a52e6
commit e2f988b995

View File

@ -697,7 +697,7 @@ the mint:
and then sends $S_{K}(B_b(C_p))$ to the customer. and then sends $S_{K}(B_b(C_p))$ to the customer.
If the guards for the transaction fail, the mint sends a descriptive error back to the customer, If the guards for the transaction fail, the mint sends a descriptive error back to the customer,
with proof that it operated correctly (i.e. by showing the transaction history for the reserve). with proof that it operated correctly (i.e. by showing the transaction history for the reserve).
\item The customer computes (and verifies) the unblinded signature $S_K(C_p) = B^{-1}_b(S_K(B_b(C_p)))$. \item The customer computes (and verifies) the unblinded signature $S_K(C_p) = U_b(S_K(B_b(C_p)))$.
The customer writes $\langle S_K(C_p), c_s \rangle$ to disk (effectively adding the coin to the The customer writes $\langle S_K(C_p), c_s \rangle$ to disk (effectively adding the coin to the
local wallet) for future use. local wallet) for future use.
\end{enumerate} \end{enumerate}
@ -1359,7 +1359,7 @@ indicate the application of a function $f$ to one or more arguments.
\item[$K$]{Public-priate (RSA) coin signing key pair $K := (K_s, K_p)$} \item[$K$]{Public-priate (RSA) coin signing key pair $K := (K_s, K_p)$}
\item[$b$]{RSA blinding factor for RSA-style blind signatures} \item[$b$]{RSA blinding factor for RSA-style blind signatures}
\item[$B_b()$]{RSA blinding over the argument using blinding factor $b$} \item[$B_b()$]{RSA blinding over the argument using blinding factor $b$}
\item[$B^{-1}_b()$]{RSA unblinding of the argument using blinding factor $b$, inverse of $B_b()$} \item[$U_b()$]{RSA unblinding of the argument using blinding factor $b$}
\item[$S_K()$]{Chaum-style RSA signature, commutes with blinding operation $B_b()$} \item[$S_K()$]{Chaum-style RSA signature, commutes with blinding operation $B_b()$}
\item[$w_s$]{Private key from customer for authentication} \item[$w_s$]{Private key from customer for authentication}
\item[$W_p$]{Public key corresponding to $w_s$} \item[$W_p$]{Public key corresponding to $w_s$}