add feedback to refresh in cs thesis

This commit is contained in:
Lucien Heuzeveldt 2022-02-20 21:33:08 +01:00
parent bc150693de
commit dbc5adba7f
No known key found for this signature in database
GPG Key ID: F92EA78E19F4E49E

View File

@ -115,8 +115,8 @@ The denomination key was chosen because it has the recopu protocol in place that
\\ & \xrightarrow[\rule{2.5cm}{0pt}]{n_w, D_p} &
% generate R
\\ & & \text{verify if } D_p \text{ is valid}
\\ & & r_0 := \text{HKDF}(256,n_w || d_s, \text{"r0"})
\\ & & r_1 := \text{HKDF}(256,n_w || d_s, \text{"r1"})
\\ & & r_0 := \text{HKDF}(256,n_w || d_s, \text{"wr0"})
\\ & & r_1 := \text{HKDF}(256,n_w || d_s, \text{"wr1"})
\\ & & R_0 := r_0G
\\ & & R_1 := r_1G
\\ & \xleftarrow[\rule{2.5cm}{0pt}]{R_0, R_1} &
@ -169,13 +169,13 @@ The denomination key was chosen because it has the recopu protocol in place that
\\ & & b := \text{HKDF}(1,n_w || d_s, \text{"b"})
\\ & & s \leftarrow \text{GetWithdraw}(n_w, D_p)
\\ & & \textbf{if } s = \bot
\\ & & \textbf{check !} \text{NonceReuse} (n_w, D_p)
\\ & & \textbf{check !} \text{NonceReuse} (n_w, D_p, \rho_W)
\\ & & r_b := \text{HKDF}(256,n_w || d_s, \text{"r}b\text{"})
% sign coin
\\ & & s := r_b + c_b d_s \mod p
% the following db operations are atomic
\\ & & \text{decrease balance if sufficient and}
\\ & & \text{persist NonceUse } \langle n_w, D_p, s \rangle
\\ & & \text{persist NonceUse } \langle n_w, D_p, \rho_W \rangle
\\ & & \text{persist } \langle D_p, s \rangle
\\ & & \textbf{endif}
\\ & \xleftarrow[\rule{2.5cm}{0pt}]{b,s} &
@ -265,23 +265,21 @@ In the reveal phase, the RSA signing and unblinding is exchanged with Schnorr's
\\ \text{coin}_0 = \langle D_{p(0)}, c_s^{(0)}, C_p^{(0)}, \sigma_c^{(0)} \rangle && \text{new denomination keys } d_s, D_P
% request r
\\ & &
\\ \omega := randombytes(32)
\\ \text{persist } \langle \omega, D_p \rangle
%\\ s_w := \text{HKDF}(256, c_s^{(0)},\text{"n"})
\\ n_r := \text{HKDF}(256, \omega,\text{"n"})
\\ n_r := randombytes(32)
\\ \text{persist } \langle n_r, D_p \rangle
% sign with reserve sk
\\ & \xrightarrow[\rule{2.5cm}{0pt}]{n_r, D_p} &
% generate R
\\ & & \text{verify if } D_p \text{ is valid}
\\ & & r_0 := \text{HKDF}(256,n_r || d_s, \text{"r0"})
\\ & & r_1 := \text{HKDF}(256,n_r || d_s, \text{"r1"})
\\ & & r_0 := \text{HKDF}(256, n_r || d_s, \text{"mr0"})
\\ & & r_1 := \text{HKDF}(256, n_r || d_s, \text{"mr1"})
\\ & & R_0 := r_0G
\\ & & R_1 := r_1G
\\ & \xleftarrow[\rule{2cm}{0pt}]{R_0, R_1} &
% refresh request
\\ \textbf{for } i = 1, \dots, \kappa: % generate k derives
%\\ s_i \leftarrow \{0,1\}^{256} % seed generation
\\ t_i := \text{HKDF}(256, \omega || R_0 || R_1,\text{"t} i \text{"} ) % seed generation
\\ t_i := \text{HKDF}(256, c_s^{(0)}, n_r || R_0 || R_1,\text{"t} i \text{"} ) % seed generation
\\ X_i := \text{RefreshDerive}(t_i, D_p, C_p^{(0)}, R_0, R_1)
\\ (T_i, c_s^{(i)}, C_p^{(i)}, \overline{c_0}, \overline{c_1}):= X_i
\\ \textbf{endfor}
@ -293,7 +291,7 @@ In the reveal phase, the RSA signing and unblinding is exchanged with Schnorr's
\\ \rho_{RC} := \langle h_C, D_p, \text{ } D_{p(0)}, C_p^{(0)}, \sigma_C^{(0)} \rangle
\\ \sigma_{RC} := \text{Ed25519.Sign}(c_s^{(0)}, \rho_{RC})
\\ \text{Persist refresh-request}
\\ \langle \omega, R_0, R_1, \rho_{RC}, \sigma_{RC} \rangle
\\ \langle n_r, R_0, R_1, \rho_{RC}, \sigma_{RC} \rangle
\\
\\ & \textit{Continued in figure \ref{fig:refresh-commit-part2}} &
\end{array}$
@ -324,7 +322,7 @@ In the reveal phase, the RSA signing and unblinding is exchanged with Schnorr's
\\ & & v := \text{Denomination}(D_p)
\\ & & \textbf{check } \text{IsOverspending}(C_p^{(0)}, D_ {p(0)}, v)
\\ & & \text{verify if } D_p \text{ is valid}
\\ & & \textbf{check !} \text{NonceReuse} (n_r, D_p)
\\ & & \textbf{check !} \text{NonceReuse} (n_r, D_p, \rho_{RC})
\\ & & \textbf{check } \text{Schnorr.Verify}(D_{p(0)}, C_p^{(0)}, \sigma_C^{(0)})
\\ & & \text{MarkFractionalSpend}(C_p^{(0)}, v)
\\ & & \gamma \leftarrow \{1, \dots, \kappa\}
@ -377,7 +375,7 @@ In the reveal phase, the RSA signing and unblinding is exchanged with Schnorr's
\\ & & h_{\overline{c}}' := H(h_{\overline{c_0}}, h_{\overline{c_1}}, n_r)
\\ & & h_C' = H(h_T', h_{\overline{c}}')
\\ & & \textbf{check } h_C = h_C'
\\ & & r_b := \text{HKDF}(256,n_r || d_s, \text{"r}b\text{"})
\\ & & r_b := \text{HKDF}(256, n_r || d_s, \text{"mr}b\text{"})
\\ & & \overline{s}_{C_p}^{(\gamma)} = r_b + \overline{c_{b_\gamma}} d_s \mod p
\\ & & \text{persist } \langle \rho_L, \sigma_L, S \rangle
\\ & \xleftarrow[\rule{2.5cm}{0pt}]{b, \overline{s}_C^{(\gamma)}} &