fix minor issues introduced in last reformulation of refresh

This commit is contained in:
Christian Grothoff 2016-08-10 01:01:21 +02:00
parent bbeef4560d
commit cc20319a1a

View File

@ -781,9 +781,9 @@ generator of the elliptic curve.
\end{itemize} \end{itemize}
We have computed $L_i$ as a Diffie-Hellman shared secret between We have computed $L_i$ as a Diffie-Hellman shared secret between
the transfer key pair $T^{(i)} := \left(t^{(i)}_s,T^{(i)}_p\right)$ the transfer key pair $T^{(i)} := \left(t^{(i)}_s,T^{(i)}_p\right)$
and old coin key pair $C' := \left(c_s', C_p'\right)$, and old coin key pair $C' := \left(c_s', C_p'\right)$;
so that $L_i = H(t^{(i)}_s C'_p)$ too. as a result, $L_i = H(t^{(i)}_s C'_p)$ also holds.
Now the customer applies key derivtion functions $\KDF_?$ to $L_i$ to generate Now the customer applies key derivation functions $\KDF_?$ to $L_i$ to generate
\begin{itemize} \begin{itemize}
\item a blinding factor $b^{(i)} = \FDH_K(\KDF_{\textrm{blinding}}(L_i))$. \item a blinding factor $b^{(i)} = \FDH_K(\KDF_{\textrm{blinding}}(L_i))$.
\item $c_s^{(i)} = \KDF_{\textrm{Ed25519}}(L_i)$ \item $c_s^{(i)} = \KDF_{\textrm{Ed25519}}(L_i)$
@ -795,7 +795,7 @@ generator of the elliptic curve.
The customer saves to disk $\langle C', \vec{t}\rangle$ where The customer saves to disk $\langle C', \vec{t}\rangle$ where
$\vec{t} = \langle t^{(1)}_s, \ldots, t^{(\kappa)}_s \rangle$. $\vec{t} = \langle t^{(1)}_s, \ldots, t^{(\kappa)}_s \rangle$.
We observe that $t^{(i)}_s$ suffices to regenerate $C^{(i)}$ and $b^{(i)}$ We observe that $t^{(i)}_s$ suffices to regenerate $C^{(i)}$ and $b^{(i)}$
using the same key derivtion functions. using the same key derivation functions.
% \item % \item
The customer computes $B^{(i)} := B_{b^{(i)}}(\FDH_K(C^{(i)}_p))$ The customer computes $B^{(i)} := B_{b^{(i)}}(\FDH_K(C^{(i)}_p))$
@ -811,7 +811,7 @@ generator of the elliptic curve.
\item The customer commits $\langle C', S_K(C'_p, \gamma) \rangle$ to disk. \item The customer commits $\langle C', S_K(C'_p, \gamma) \rangle$ to disk.
% \item % \item
Also, the customer computes $\mathfrak{R} := \left(t_s^{(i)}\right)_{i \ne \gamma}$ Also, the customer assembles $\mathfrak{R} := \left(t_s^{(i)}\right)_{i \ne \gamma}$
and sends $S_{C'}(\mathfrak{R})$ to the exchange. and sends $S_{C'}(\mathfrak{R})$ to the exchange.
\item \label{step:refresh-ccheck} \item \label{step:refresh-ccheck}
The exchange checks whether $\mathfrak{R}$ is consistent with The exchange checks whether $\mathfrak{R}$ is consistent with
@ -820,15 +820,15 @@ generator of the elliptic curve.
\vspace{-2ex} \vspace{-2ex}
\begin{minipage}{5cm} \begin{minipage}{5cm}
\begin{align*} \begin{align*}
\overline{K}_i :&= H(t_s^{(i)} C_p') \\ \overline{L}_i :&= H(t_s^{(i)} C_p') \\
\overline{c}_s^{(i)} :&= \KDF_{\textrm{Ed25519}}(\overline{K}_i) \\ \overline{c}_s^{(i)} :&= \KDF_{\textrm{Ed25519}}(\overline{L}_i) \\
\overline{C^{(i)}_p} :&= \overline{c}_s^{(i)} G \overline{C^{(i)}_p} :&= \overline{c}_s^{(i)} G
\end{align*} \end{align*}
\end{minipage} \end{minipage}
\begin{minipage}{5cm} \begin{minipage}{5cm}
\begin{align*} \begin{align*}
\overline{T_p^{(i)}} :&= t_s^{(i)} G \\ \overline{T_p^{(i)}} :&= t_s^{(i)} G \\
\overline{b}^{(i)} :&= \FDH_K(\KDF_{\textrm{blinding}}(\overline{K}_i)) \\ \overline{b}^{(i)} :&= \FDH_K(\KDF_{\textrm{blinding}}(\overline{L}_i)) \\
\overline{B^{(i)}} :&= B_{\overline{b_i}}(\overline{C_p^{(i)}}) \overline{B^{(i)}} :&= B_{\overline{b_i}}(\overline{C_p^{(i)}})
\end{align*} \end{align*}
\end{minipage} \end{minipage}