fix minor issues introduced in last reformulation of refresh
This commit is contained in:
parent
bbeef4560d
commit
cc20319a1a
@ -781,9 +781,9 @@ generator of the elliptic curve.
|
||||
\end{itemize}
|
||||
We have computed $L_i$ as a Diffie-Hellman shared secret between
|
||||
the transfer key pair $T^{(i)} := \left(t^{(i)}_s,T^{(i)}_p\right)$
|
||||
and old coin key pair $C' := \left(c_s', C_p'\right)$,
|
||||
so that $L_i = H(t^{(i)}_s C'_p)$ too.
|
||||
Now the customer applies key derivtion functions $\KDF_?$ to $L_i$ to generate
|
||||
and old coin key pair $C' := \left(c_s', C_p'\right)$;
|
||||
as a result, $L_i = H(t^{(i)}_s C'_p)$ also holds.
|
||||
Now the customer applies key derivation functions $\KDF_?$ to $L_i$ to generate
|
||||
\begin{itemize}
|
||||
\item a blinding factor $b^{(i)} = \FDH_K(\KDF_{\textrm{blinding}}(L_i))$.
|
||||
\item $c_s^{(i)} = \KDF_{\textrm{Ed25519}}(L_i)$
|
||||
@ -795,7 +795,7 @@ generator of the elliptic curve.
|
||||
The customer saves to disk $\langle C', \vec{t}\rangle$ where
|
||||
$\vec{t} = \langle t^{(1)}_s, \ldots, t^{(\kappa)}_s \rangle$.
|
||||
We observe that $t^{(i)}_s$ suffices to regenerate $C^{(i)}$ and $b^{(i)}$
|
||||
using the same key derivtion functions.
|
||||
using the same key derivation functions.
|
||||
|
||||
% \item
|
||||
The customer computes $B^{(i)} := B_{b^{(i)}}(\FDH_K(C^{(i)}_p))$
|
||||
@ -811,7 +811,7 @@ generator of the elliptic curve.
|
||||
\item The customer commits $\langle C', S_K(C'_p, \gamma) \rangle$ to disk.
|
||||
|
||||
% \item
|
||||
Also, the customer computes $\mathfrak{R} := \left(t_s^{(i)}\right)_{i \ne \gamma}$
|
||||
Also, the customer assembles $\mathfrak{R} := \left(t_s^{(i)}\right)_{i \ne \gamma}$
|
||||
and sends $S_{C'}(\mathfrak{R})$ to the exchange.
|
||||
\item \label{step:refresh-ccheck}
|
||||
The exchange checks whether $\mathfrak{R}$ is consistent with
|
||||
@ -820,15 +820,15 @@ generator of the elliptic curve.
|
||||
\vspace{-2ex}
|
||||
\begin{minipage}{5cm}
|
||||
\begin{align*}
|
||||
\overline{K}_i :&= H(t_s^{(i)} C_p') \\
|
||||
\overline{c}_s^{(i)} :&= \KDF_{\textrm{Ed25519}}(\overline{K}_i) \\
|
||||
\overline{L}_i :&= H(t_s^{(i)} C_p') \\
|
||||
\overline{c}_s^{(i)} :&= \KDF_{\textrm{Ed25519}}(\overline{L}_i) \\
|
||||
\overline{C^{(i)}_p} :&= \overline{c}_s^{(i)} G
|
||||
\end{align*}
|
||||
\end{minipage}
|
||||
\begin{minipage}{5cm}
|
||||
\begin{align*}
|
||||
\overline{T_p^{(i)}} :&= t_s^{(i)} G \\
|
||||
\overline{b}^{(i)} :&= \FDH_K(\KDF_{\textrm{blinding}}(\overline{K}_i)) \\
|
||||
\overline{b}^{(i)} :&= \FDH_K(\KDF_{\textrm{blinding}}(\overline{L}_i)) \\
|
||||
\overline{B^{(i)}} :&= B_{\overline{b_i}}(\overline{C_p^{(i)}})
|
||||
\end{align*}
|
||||
\end{minipage}
|
||||
|
Loading…
Reference in New Issue
Block a user