From 4821541c7cc5fe042a4403b7acdf771df22c9663 Mon Sep 17 00:00:00 2001 From: Sree Harsha Totakura Date: Mon, 26 Oct 2015 12:22:24 +0100 Subject: [PATCH] fix typos --- doc/paper/taler.tex | 7 ++++--- 1 file changed, 4 insertions(+), 3 deletions(-) diff --git a/doc/paper/taler.tex b/doc/paper/taler.tex index 8595ba27b..e9c795857 100644 --- a/doc/paper/taler.tex +++ b/doc/paper/taler.tex @@ -1362,7 +1362,8 @@ superscript $(i)$ is used to indicate one of the elements of a vector during the cut-and-choose protocol. Bold-face is used to indicate a vector over these elements. A line above indicates a value computed by the verifier during the cut-and-choose operation. We use $f()$ to -indicate the application of a function $f$ to one or more arguments. +indicate the application of a function $f$ to one or more arguments. Records of +data being committed to disk are represented in between $\langle\rangle$. \begin{description} \item[$K_s$]{Private (RSA) key of the mint used for coin signing} @@ -1405,7 +1406,7 @@ indicate the application of a function $f$ to one or more arguments. \item[$i$]{Index over cut-and-choose set, $i \in \{1,\ldots,\kappa\}$} \item[$\gamma$]{Selected index in cut-and-choose protocol, $\gamma \in \{1,\ldots,\kappa\}$} \item[$t^{(i)}_s$]{private transfer key, a scalar} - \item[$T^{(i)}_s$]{private transfer key, point on a curve (same curve must be used for $C_p$)} + \item[$T^{(i)}_p$]{public transfer key, point on a curve (same curve must be used for $C_p$)} \item[$T^{(i)}$]{public-private transfer key pair $T^{(i)} := (t^{(i)}_s,T^{(i)}_s)$} \item[$\vec{T}$]{Vector of $T^{(i)}$} \item[$c_s^{(i)}$]{Secret key corresponding to a fresh coin, scalar on a curve} @@ -1414,7 +1415,7 @@ indicate the application of a function $f$ to one or more arguments. \item[$\vec{C}$]{Vector of $C^{(i)}$ (public and private keys)} \item[$b^{(i)}$]{Blinding factor for RSA-style blind signatures} \item[$\vec{b}$]{Vector of $b^{(i)}$} - \item[$B^(i)$]{Blinding of $C_p^{(i)}$} + \item[$B^{(i)}$]{Blinding of $C_p^{(i)}$} \item[$\vec{B}$]{Vector of $B^{(i)}$} \item[$K_i$]{Symmetric encryption key derived from ECDH operation via hashing} \item[$E_{K_i}()$]{Symmetric encryption using key $K_i$}