fix inconsistency in reveal step formulation, now matches implementation

This commit is contained in:
Christian Grothoff 2015-10-04 12:35:05 +02:00
parent cf5b48eaaa
commit 41126e6d24

View File

@ -828,7 +828,7 @@ generator of the elliptic curve.
possible to use any equivalent mint signing key known to the customer here, as $K$ merely possible to use any equivalent mint signing key known to the customer here, as $K$ merely
serves as proof to the customer that the mint selected this particular $\gamma$.} serves as proof to the customer that the mint selected this particular $\gamma$.}
\item The customer commits $\langle C', S_K(C'_p, \gamma) \rangle$ to disk. \item The customer commits $\langle C', S_K(C'_p, \gamma) \rangle$ to disk.
\item The customer computes $\mathfrak{R} := \left(t_s^{(i)}, C_p^{(i)}, b^{(i)}\right)_{i \ne \gamma}$ \item The customer computes $\mathfrak{R} := \left(t_s^{(i)}\right)_{i \ne \gamma}$
and sends $S_{C'}(\mathfrak{R})$ to the mint. and sends $S_{C'}(\mathfrak{R})$ to the mint.
\item \label{step:refresh-ccheck} The mint checks whether $\mathfrak{R}$ is consistent with the commitments; \item \label{step:refresh-ccheck} The mint checks whether $\mathfrak{R}$ is consistent with the commitments;
specifically, it computes for $i \not= \gamma$: specifically, it computes for $i \not= \gamma$:
@ -837,20 +837,21 @@ generator of the elliptic curve.
\begin{minipage}{5cm} \begin{minipage}{5cm}
\begin{align*} \begin{align*}
\overline{K}_i :&= H(t_s^{(i)} C_p'), \\ \overline{K}_i :&= H(t_s^{(i)} C_p'), \\
(\overline{c}_s^{(i)}, \overline{b}_i) :&= D_{\overline{K}_i}(E^{(i)}), \\ (\overline{c}_s^{(i)}, \overline{b_i}) :&= D_{\overline{K}_i}(E^{(i)}), \\
\overline{C^{(i)}_p} :&= \overline{c}_s^{(i)} G, \overline{C^{(i)}_p} :&= \overline{c}_s^{(i)} G,
\end{align*} \end{align*}
\end{minipage} \end{minipage}
\begin{minipage}{5cm} \begin{minipage}{5cm}
\begin{align*} \begin{align*}
\overline{T_p^{(i)}} :&= t_s^{(i)} G, \\ \\ \overline{T_p^{(i)}} :&= t_s^{(i)} G, \\ \\
\overline{B^{(i)}} :&= B_{b^{(i)}}(\overline{C_p^{(i)}}), \overline{B^{(i)}} :&= B_{\overline{b_i}}(\overline{C_p^{(i)}}),
\end{align*} \end{align*}
\end{minipage} \end{minipage}
and checks if $\overline{B^{(i)}} = B^{(i)}$ and checks if $\overline{B^{(i)}} = B^{(i)}$
and $\overline{T^{(i)}_p} = T^{(i)}_p$. and $\overline{T^{(i)}_p} = T^{(i)}_p$.
\item \label{step:refresh-done} If the commitments were consistent, \item \label{step:refresh-done} If the commitments were consistent,
the mint sends the blind signature $\widetilde{C} := the mint sends the blind signature $\widetilde{C} :=
S_{K}(B^{(\gamma)})$ to the customer. Otherwise, the mint responds S_{K}(B^{(\gamma)})$ to the customer. Otherwise, the mint responds