add section on /payback

This commit is contained in:
Christian Grothoff 2017-05-16 15:01:13 +02:00
parent ad26eafb64
commit 2a3361961c
No known key found for this signature in database
GPG Key ID: 939E6BE1E29FC3CC

View File

@ -871,7 +871,9 @@ with signature $\widetilde{C} := S_K(\FDH_K(C_p))$
public key.
\item
The merchant creates a signed contract
$\mathcal{A} := S_M(m, f, a, H(p, r), \vec{X})$
\begin{equation*}
\mathcal{A} := S_M(m, f, a, H(p, r), \vec{X})
\end{equation*}
where $m$ is an identifier for this transaction, $f$ is the price of the offer,
and $a$ is data relevant
to the contract indicating which services or goods the merchant will
@ -1564,6 +1566,24 @@ upholds the core principles described in~\cite{fc2014murdoch}. In
particular, in providing the cryptographic proofs as evidence none of
the participants have to disclose their core secrets.
\subsection{Business concerns}
The Taler system implementation includes additional protocol elements
to address real-world concerns. To begin with, the exchange
automatically transfers any funds that have been left for an extended
amount of time in a customer's reserve back to the customer's bank
account. Furthermore, we allow the exchange to revoke denomination
keys, and wallets periodically check for such revocations. If a
denomination key has been revoked, the wallets use the {\em payback}
protocol to deposit funds back to the customer's reserve, from where
they are either withdrawn with a new denomination key or sent back to
the customer's bank account. Unlike ordinary deposits, the payback
protocol does not incur any transaction fees. The primary use of the
protocol is to limit the financial loss in cases where an audit
reveals that the exchange's private keys were compromised, and to
automatically pay back balances held in a customers' wallet if an
exchange ever goes out of business.
%\subsection{System Performance}
%
@ -1782,7 +1802,10 @@ coin first.
the exchange persists $\langle \mathcal{L} \rangle$
and notifies the merchant that locking was successful.
\item\label{contract2} The merchant creates a digitally signed contract
$\mathcal{A} := S_M(m, f, a, H(p, r))$ where $a$ is data relevant to the contract
\begin{equation*}
\mathcal{A} := S_M(m, f, a, H(p, r))
\end{equation*}
where $a$ is data relevant to the contract
indicating which services or goods the merchant will deliver to the customer, and $p$ is the
merchant's payment information (e.g. his IBAN number) and $r$ is an random nonce.
The merchant persists $\langle \mathcal{A} \rangle$ and sends it to the customer.