exchange/src/util/taler-helper-crypto-eddsa.c

1641 lines
43 KiB
C
Raw Normal View History

2020-11-22 23:31:35 +01:00
/*
This file is part of TALER
Copyright (C) 2014-2020 Taler Systems SA
TALER is free software; you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software
Foundation; either version 3, or (at your option) any later version.
TALER is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with
TALER; see the file COPYING. If not, see <http://www.gnu.org/licenses/>
*/
/**
* @file util/taler-helper-crypto-eddsa.c
* @brief Standalone process to perform private key EDDSA operations
* @author Christian Grothoff
*
* Key design points:
* - EVERY thread of the exchange will have its own pair of connections to the
* crypto helpers. This way, every threat will also have its own /keys state
* and avoid the need to synchronize on those.
* - auditor signatures and master signatures are to be kept in the exchange DB,
* and merged with the public keys of the helper by the exchange HTTPD!
* - the main loop of the helper is SINGLE-THREADED, but there are
* threads for crypto-workers which (only) do the signing in parallel,
* working of a work-queue.
* - thread-safety: signing happens in parallel, thus when REMOVING private keys,
* we must ensure that all signers are done before we fully free() the
* private key. This is done by reference counting (as work is always
* assigned and collected by the main thread).
*/
#include "platform.h"
#include "taler_util.h"
#include "taler-helper-crypto-eddsa.h"
#include <gcrypt.h>
#include <pthread.h>
#include <sys/eventfd.h>
#include "taler_error_codes.h"
#include "taler_signatures.h"
2020-11-22 23:31:35 +01:00
/**
* One particular key.
*/
struct Key
{
/**
* Kept in a DLL. Sorted by anchor time.
*/
struct Key *next;
/**
* Kept in a DLL. Sorted by anchor time.
*/
struct Key *prev;
/**
* Name of the file this key is stored under.
*/
char *filename;
/**
* The private key.
*/
struct TALER_ExchangePrivateKeyP exchange_priv;
/**
* The public key.
*/
struct TALER_ExchangePublicKeyP exchange_pub;
/**
* Time at which this key is supposed to become valid.
*/
struct GNUNET_TIME_Absolute anchor;
/**
* Reference counter. Counts the number of threads that are
* using this key at this time.
*/
unsigned int rc;
/**
* Flag set to true if this key has been purged and the memory
* must be freed as soon as @e rc hits zero.
*/
bool purge;
};
/**
* Information we keep for a client connected to us.
*/
struct Client
{
/**
* Kept in a DLL.
*/
struct Client *next;
/**
* Kept in a DLL.
*/
struct Client *prev;
/**
* Client address.
*/
struct sockaddr_un addr;
/**
* Number of bytes used in @e addr.
*/
socklen_t addr_size;
};
struct WorkItem
{
/**
* Kept in a DLL.
*/
struct WorkItem *next;
/**
* Kept in a DLL.
*/
struct WorkItem *prev;
/**
* Key to be used for this operation.
*/
struct Key *key;
/**
* EDDSA signature over @e msg using @e key. Result of doing the work.
*/
struct TALER_ExchangeSignatureP signature;
/**
* Message to sign.
*/
struct GNUNET_CRYPTO_EccSignaturePurpose *purpose;
/**
* Client address.
*/
struct sockaddr_un addr;
/**
* Number of bytes used in @e addr.
*/
socklen_t addr_size;
/**
* Operation status code.
*/
enum TALER_ErrorCode ec;
};
/**
* Private key of this security module. Used to sign denomination key
* announcements.
*/
static struct TALER_SecurityModulePrivateKeyP smpriv;
2020-11-23 21:10:55 +01:00
/**
* Public key of this security module.
*/
static struct TALER_SecurityModulePublicKeyP smpub;
2020-11-22 23:31:35 +01:00
/**
* Head of DLL of actual keys, sorted by anchor.
*/
static struct Key *keys_head;
/**
* Tail of DLL of actual keys.
*/
static struct Key *keys_tail;
/**
* How long can a key be used?
*/
static struct GNUNET_TIME_Relative duration;
/**
* Return value from main().
*/
static int global_ret;
/**
* Number of worker threads to use. Default (0) is to use one per CPU core
* available.
* Length of the #workers array.
*/
static unsigned int num_workers;
/**
* Time when the key update is executed.
* Either the actual current time, or a pretended time.
*/
static struct GNUNET_TIME_Absolute now;
/**
* The time for the key update, as passed by the user
* on the command line.
*/
static struct GNUNET_TIME_Absolute now_tmp;
/**
* Handle to the exchange's configuration
*/
static const struct GNUNET_CONFIGURATION_Handle *kcfg;
/**
* Where do we store the keys?
*/
static char *keydir;
/**
* How much should coin creation duration overlap
* with the next key? Basically, the starting time of two
2020-12-20 17:10:09 +01:00
* keys is always #duration - #overlap_duration apart.
2020-11-22 23:31:35 +01:00
*/
static struct GNUNET_TIME_Relative overlap_duration;
/**
* How long into the future do we pre-generate keys?
*/
static struct GNUNET_TIME_Relative lookahead_sign;
/**
* Our listen socket.
*/
static struct GNUNET_NETWORK_Handle *unix_sock;
/**
* Path where we are listening.
*/
static char *unixpath;
/**
* Task run to accept new inbound connections.
*/
static struct GNUNET_SCHEDULER_Task *read_task;
/**
* Task run to generate new keys.
*/
static struct GNUNET_SCHEDULER_Task *keygen_task;
/**
* Head of DLL of clients connected to us.
*/
static struct Client *clients_head;
/**
* Tail of DLL of clients connected to us.
*/
static struct Client *clients_tail;
/**
* Head of DLL with pending signing operations.
*/
static struct WorkItem *work_head;
/**
* Tail of DLL with pending signing operations.
*/
static struct WorkItem *work_tail;
/**
* Lock for the work queue.
*/
static pthread_mutex_t work_lock;
/**
* Condition variable for the semaphore of the work queue.
*/
static pthread_cond_t work_cond = PTHREAD_COND_INITIALIZER;
/**
* Number of items in the work queue. Also used as the semaphore counter.
*/
static unsigned long long work_counter;
/**
* Head of DLL with completed signing operations.
*/
static struct WorkItem *done_head;
/**
* Tail of DLL with completed signing operations.
*/
static struct WorkItem *done_tail;
/**
* Lock for the done queue.
*/
static pthread_mutex_t done_lock;
/**
* Task waiting for work to be done.
*/
static struct GNUNET_SCHEDULER_Task *done_task;
/**
* Signal used by threads to notify the #done_task that they
* completed work that is now in the done queue.
*/
static struct GNUNET_NETWORK_Handle *done_signal;
/**
* Set once we are in shutdown and workers should terminate.
*/
static volatile bool in_shutdown;
/**
2020-11-30 14:16:42 +01:00
* Array of #num_workers sign_worker() threads.
2020-11-22 23:31:35 +01:00
*/
static pthread_t *workers;
/**
* Main function of a worker thread that signs.
*
* @param cls NULL
* @return NULL
*/
static void *
sign_worker (void *cls)
{
(void) cls;
GNUNET_assert (0 == pthread_mutex_lock (&work_lock));
while (! in_shutdown)
{
struct WorkItem *wi;
while (NULL != (wi = work_head))
{
/* take work from queue */
GNUNET_CONTAINER_DLL_remove (work_head,
work_tail,
wi);
work_counter--;
GNUNET_assert (0 == pthread_mutex_unlock (&work_lock));
{
if (GNUNET_OK !=
GNUNET_CRYPTO_eddsa_sign_ (&wi->key->exchange_priv.eddsa_priv,
wi->purpose,
&wi->signature.eddsa_signature))
wi->ec = TALER_EC_GENERIC_INTERNAL_INVARIANT_FAILURE;
else
wi->ec = TALER_EC_NONE;
}
/* put completed work into done queue */
GNUNET_assert (0 == pthread_mutex_lock (&done_lock));
GNUNET_CONTAINER_DLL_insert (done_head,
done_tail,
wi);
GNUNET_assert (0 == pthread_mutex_unlock (&done_lock));
{
uint64_t val = GNUNET_htonll (1);
/* raise #done_signal */
if (sizeof(val) !=
write (GNUNET_NETWORK_get_fd (done_signal),
&val,
sizeof (val)))
GNUNET_log_strerror (GNUNET_ERROR_TYPE_WARNING,
"write(eventfd)");
}
GNUNET_assert (0 == pthread_mutex_lock (&work_lock));
}
/* queue is empty, wait for work */
GNUNET_assert (0 ==
pthread_cond_wait (&work_cond,
&work_lock));
}
GNUNET_assert (0 ==
pthread_mutex_unlock (&work_lock));
return NULL;
}
/**
* Free @a client, releasing all (remaining) state.
*
* @param[in] client data to free
*/
static void
free_client (struct Client *client)
{
GNUNET_CONTAINER_DLL_remove (clients_head,
clients_tail,
client);
GNUNET_free (client);
}
/**
* Function run to read incoming requests from a client.
*
* @param cls the `struct Client`
*/
static void
read_job (void *cls);
/**
* Free @a key. It must already have been removed from the DLL.
*
* @param[in] key the key to free
*/
static void
free_key (struct Key *key)
{
GNUNET_free (key->filename);
GNUNET_free (key);
}
/**
* Send a message starting with @a hdr to @a client.
*
* @param addr address where to send the message
* @param addr_size number of bytes in @a addr
* @param hdr beginning of the message, length indicated in size field
* @return #GNUNET_OK on success
*/
static int
transmit (const struct sockaddr_un *addr,
socklen_t addr_size,
const struct GNUNET_MessageHeader *hdr)
{
ssize_t ret;
ret = GNUNET_NETWORK_socket_sendto (unix_sock,
hdr,
ntohs (hdr->size),
(const struct sockaddr *) addr,
addr_size);
if (ret != ntohs (hdr->size))
{
GNUNET_log_strerror (GNUNET_ERROR_TYPE_INFO,
"sendto");
return GNUNET_SYSERR;
}
return GNUNET_OK;
}
/**
* Process completed tasks that are in the #done_head queue, sending
* the result back to the client (and resuming the client).
*
* @param cls NULL
*/
static void
handle_done (void *cls)
{
uint64_t data;
(void) cls;
/* consume #done_signal */
if (sizeof (data) !=
read (GNUNET_NETWORK_get_fd (done_signal),
&data,
sizeof (data)))
GNUNET_log_strerror (GNUNET_ERROR_TYPE_WARNING,
"read(eventfd)");
done_task = GNUNET_SCHEDULER_add_read_net (GNUNET_TIME_UNIT_FOREVER_REL,
done_signal,
&handle_done,
NULL);
GNUNET_assert (0 == pthread_mutex_lock (&done_lock));
while (NULL != done_head)
{
struct WorkItem *wi = done_head;
GNUNET_CONTAINER_DLL_remove (done_head,
done_tail,
wi);
GNUNET_assert (0 == pthread_mutex_unlock (&done_lock));
if (TALER_EC_NONE != wi->ec)
{
struct TALER_CRYPTO_EddsaSignFailure sf = {
2020-11-22 23:31:35 +01:00
.header.size = htons (sizeof (sf)),
.header.type = htons (TALER_HELPER_EDDSA_MT_RES_SIGN_FAILURE),
.ec = htonl (wi->ec)
};
GNUNET_log (GNUNET_ERROR_TYPE_WARNING,
"Signing request failed, worker failed to produce signature\n");
(void) transmit (&wi->addr,
wi->addr_size,
&sf.header);
}
else
{
struct TALER_CRYPTO_EddsaSignResponse sr = {
2020-11-22 23:31:35 +01:00
.header.size = htons (sizeof (sr)),
.header.type = htons (TALER_HELPER_EDDSA_MT_RES_SIGNATURE),
.exchange_pub = wi->key->exchange_pub,
.exchange_sig = wi->signature
};
(void) transmit (&wi->addr,
wi->addr_size,
&sr.header);
}
{
struct Key *key = wi->key;
key->rc--;
if ( (0 == key->rc) &&
(key->purge) )
free_key (key);
}
GNUNET_free (wi);
GNUNET_assert (0 == pthread_mutex_lock (&done_lock));
}
GNUNET_assert (0 == pthread_mutex_unlock (&done_lock));
}
/**
* Handle @a client request @a sr to create signature. Create the
* signature using the respective key and return the result to
* the client.
*
* @param addr address of the client making the request
* @param addr_size number of bytes in @a addr
* @param sr the request details
*/
static void
handle_sign_request (const struct sockaddr_un *addr,
socklen_t addr_size,
const struct TALER_CRYPTO_EddsaSignRequest *sr)
2020-11-22 23:31:35 +01:00
{
const struct GNUNET_CRYPTO_EccSignaturePurpose *purpose = &sr->purpose;
struct WorkItem *wi;
size_t purpose_size = ntohs (sr->header.size) - sizeof (*sr)
+ sizeof (*purpose);
if (purpose_size != htonl (purpose->size))
{
struct TALER_CRYPTO_EddsaSignFailure sf = {
2020-11-22 23:31:35 +01:00
.header.size = htons (sizeof (sr)),
.header.type = htons (TALER_HELPER_EDDSA_MT_RES_SIGN_FAILURE),
.ec = htonl (TALER_EC_GENERIC_PARAMETER_MALFORMED)
};
GNUNET_log (GNUNET_ERROR_TYPE_INFO,
"Signing request failed, request malformed\n");
(void) transmit (addr,
addr_size,
&sf.header);
return;
}
GNUNET_log (GNUNET_ERROR_TYPE_INFO,
"Received request to sign over %u bytes\n",
(unsigned int) purpose_size);
wi = GNUNET_new (struct WorkItem);
wi->addr = *addr;
wi->addr_size = addr_size;
wi->key = keys_head;
keys_head->rc++;
wi->purpose = GNUNET_memdup (purpose,
purpose_size);
GNUNET_assert (0 == pthread_mutex_lock (&work_lock));
work_counter++;
GNUNET_CONTAINER_DLL_insert (work_head,
work_tail,
wi);
GNUNET_assert (0 == pthread_mutex_unlock (&work_lock));
GNUNET_assert (0 == pthread_cond_signal (&work_cond));
}
/**
* Notify @a client about @a key becoming available.
*
* @param[in,out] client the client to notify; possible freed if transmission fails
* @param key the key to notify @a client about
* @return #GNUNET_OK on success
*/
static int
notify_client_key_add (struct Client *client,
const struct Key *key)
{
struct TALER_CRYPTO_EddsaKeyAvailableNotification an = {
.header.size = htons (sizeof (an)),
.header.type = htons (TALER_HELPER_EDDSA_MT_AVAIL),
.anchor_time = GNUNET_TIME_absolute_hton (key->anchor),
.duration = GNUNET_TIME_relative_hton (duration),
2020-11-23 21:10:55 +01:00
.exchange_pub = key->exchange_pub,
.secm_pub = smpub
2020-11-22 23:31:35 +01:00
};
TALER_exchange_secmod_eddsa_sign (&key->exchange_pub,
key->anchor,
duration,
&smpriv,
&an.secm_sig);
2020-11-22 23:31:35 +01:00
if (GNUNET_OK !=
transmit (&client->addr,
client->addr_size,
&an.header))
{
GNUNET_log (GNUNET_ERROR_TYPE_INFO,
"Client %s must have disconnected\n",
client->addr.sun_path);
free_client (client);
return GNUNET_SYSERR;
}
return GNUNET_OK;
}
/**
* Notify @a client about @a key being purged.
*
* @param[in,out] client the client to notify; possible freed if transmission fails
* @param key the key to notify @a client about
* @return #GNUNET_OK on success
*/
static int
notify_client_key_del (struct Client *client,
const struct Key *key)
{
struct TALER_CRYPTO_EddsaKeyPurgeNotification pn = {
.header.type = htons (TALER_HELPER_EDDSA_MT_PURGE),
.header.size = htons (sizeof (pn)),
.exchange_pub = key->exchange_pub
};
if (GNUNET_OK !=
transmit (&client->addr,
client->addr_size,
&pn.header))
{
GNUNET_log (GNUNET_ERROR_TYPE_INFO,
"Client %s must have disconnected\n",
client->addr.sun_path);
free_client (client);
return GNUNET_SYSERR;
}
return GNUNET_OK;
}
/**
* Initialize key material for key @a key (also on disk).
*
* @param[in,out] key to compute key material for
* @param position where in the DLL will the @a key go
* @return #GNUNET_OK on success
*/
static int
setup_key (struct Key *key,
struct Key *position)
{
struct GNUNET_CRYPTO_EddsaPrivateKey priv;
struct GNUNET_CRYPTO_EddsaPublicKey pub;
GNUNET_CRYPTO_eddsa_key_create (&priv);
GNUNET_CRYPTO_eddsa_key_get_public (&priv,
&pub);
GNUNET_asprintf (&key->filename,
"%s/%llu",
keydir,
(unsigned long long) (key->anchor.abs_value_us
/ GNUNET_TIME_UNIT_SECONDS.rel_value_us));
if (GNUNET_OK !=
2020-11-22 23:31:35 +01:00
GNUNET_DISK_fn_write (key->filename,
&priv,
sizeof (priv),
GNUNET_DISK_PERM_USER_READ))
{
GNUNET_log_strerror_file (GNUNET_ERROR_TYPE_ERROR,
"write",
key->filename);
return GNUNET_SYSERR;
}
GNUNET_log (GNUNET_ERROR_TYPE_INFO,
"Setup fresh private key in `%s'\n",
key->filename);
key->exchange_priv.eddsa_priv = priv;
key->exchange_pub.eddsa_pub = pub;
GNUNET_CONTAINER_DLL_insert_after (keys_head,
keys_tail,
position,
key);
/* tell clients about new key */
{
struct Client *nxt;
for (struct Client *client = clients_head;
NULL != client;
client = nxt)
{
nxt = client->next;
if (GNUNET_OK !=
notify_client_key_add (client,
key))
{
GNUNET_log (GNUNET_ERROR_TYPE_INFO,
"Failed to notify client about new key, client dropped\n");
}
}
}
return GNUNET_OK;
}
/**
* A client informs us that a key has been revoked.
* Check if the key is still in use, and if so replace (!)
* it with a fresh key.
*
* @param addr address of the client making the request
* @param addr_size number of bytes in @a addr
* @param rr the revocation request
*/
static void
handle_revoke_request (const struct sockaddr_un *addr,
socklen_t addr_size,
const struct TALER_CRYPTO_EddsaRevokeRequest *rr)
2020-11-22 23:31:35 +01:00
{
struct Key *key;
struct Key *nkey;
nkey = NULL;
for (struct Key *pos = keys_head; NULL != pos; pos = pos->next)
if (0 == GNUNET_memcmp (&pos->exchange_pub,
&rr->exchange_pub))
{
key = pos;
break;
}
if (NULL == key)
{
GNUNET_log (GNUNET_ERROR_TYPE_WARNING,
"Revocation request ignored, key unknown\n");
return;
}
/* kill existing key, done first to ensure this always happens */
if (0 != unlink (key->filename))
GNUNET_log_strerror_file (GNUNET_ERROR_TYPE_ERROR,
"unlink",
key->filename);
/* Setup replacement key */
nkey = GNUNET_new (struct Key);
nkey->anchor = key->anchor;
if (GNUNET_OK !=
setup_key (nkey,
key))
{
GNUNET_break (0);
GNUNET_SCHEDULER_shutdown ();
global_ret = 44;
return;
}
/* get rid of the old key */
key->purge = true;
GNUNET_CONTAINER_DLL_remove (keys_head,
keys_tail,
key);
GNUNET_log (GNUNET_ERROR_TYPE_INFO,
"Revocation complete\n");
/* Tell clients this key is gone */
{
struct Client *nxt;
for (struct Client *client = clients_head;
NULL != client;
client = nxt)
{
nxt = client->next;
if (GNUNET_OK !=
notify_client_key_del (client,
key))
GNUNET_log (GNUNET_ERROR_TYPE_INFO,
"Failed to notify client about revoked key, client dropped\n");
}
}
if (0 == key->rc)
free_key (key);
}
static void
read_job (void *cls)
{
struct Client *client = cls;
char buf[65536];
ssize_t buf_size;
const struct GNUNET_MessageHeader *hdr;
struct sockaddr_un addr;
socklen_t addr_size = sizeof (addr);
read_task = GNUNET_SCHEDULER_add_read_net (GNUNET_TIME_UNIT_FOREVER_REL,
unix_sock,
&read_job,
NULL);
buf_size = GNUNET_NETWORK_socket_recvfrom (unix_sock,
buf,
sizeof (buf),
(struct sockaddr *) &addr,
&addr_size);
if (-1 == buf_size)
{
GNUNET_log_strerror (GNUNET_ERROR_TYPE_WARNING,
"recv");
return;
}
if (0 == buf_size)
{
return;
}
if (buf_size < sizeof (struct GNUNET_MessageHeader))
{
GNUNET_break_op (0);
return;
}
hdr = (const struct GNUNET_MessageHeader *) buf;
if (ntohs (hdr->size) != buf_size)
{
GNUNET_break_op (0);
free_client (client);
return;
}
switch (ntohs (hdr->type))
{
case TALER_HELPER_EDDSA_MT_REQ_INIT:
if (ntohs (hdr->size) != sizeof (struct GNUNET_MessageHeader))
{
GNUNET_break_op (0);
return;
}
{
struct Client *client;
client = GNUNET_new (struct Client);
client->addr = addr;
client->addr_size = addr_size;
GNUNET_CONTAINER_DLL_insert (clients_head,
clients_tail,
client);
for (struct Key *key = keys_head;
NULL != key;
key = key->next)
{
if (GNUNET_OK !=
notify_client_key_add (client,
key))
{
/* client died, skip the rest */
client = NULL;
2020-11-22 23:31:35 +01:00
break;
}
}
if (NULL != client)
{
struct GNUNET_MessageHeader synced = {
.type = htons (TALER_HELPER_EDDSA_SYNCED),
.size = htons (sizeof (synced))
};
if (GNUNET_OK !=
transmit (&client->addr,
client->addr_size,
&synced))
{
GNUNET_log (GNUNET_ERROR_TYPE_INFO,
"Client %s must have disconnected\n",
client->addr.sun_path);
free_client (client);
}
}
2020-11-22 23:31:35 +01:00
}
break;
case TALER_HELPER_EDDSA_MT_REQ_SIGN:
if (ntohs (hdr->size) < sizeof (struct TALER_CRYPTO_EddsaSignRequest))
2020-11-22 23:31:35 +01:00
{
GNUNET_break_op (0);
return;
}
handle_sign_request (&addr,
addr_size,
(const struct TALER_CRYPTO_EddsaSignRequest *) buf);
2020-11-22 23:31:35 +01:00
break;
case TALER_HELPER_EDDSA_MT_REQ_REVOKE:
if (ntohs (hdr->size) != sizeof (struct TALER_CRYPTO_EddsaRevokeRequest))
2020-11-22 23:31:35 +01:00
{
GNUNET_break_op (0);
return;
}
handle_revoke_request (&addr,
addr_size,
(const struct
TALER_CRYPTO_EddsaRevokeRequest *) buf);
2020-11-22 23:31:35 +01:00
break;
default:
GNUNET_break_op (0);
return;
}
}
/**
* Create a new key (we do not have enough).
*
* @return #GNUNET_OK on success
*/
static int
create_key (void)
{
struct Key *key;
struct GNUNET_TIME_Absolute anchor;
struct GNUNET_TIME_Absolute now;
now = GNUNET_TIME_absolute_get ();
(void) GNUNET_TIME_round_abs (&now);
if (NULL == keys_tail)
{
anchor = now;
}
else
{
anchor = GNUNET_TIME_absolute_add (keys_tail->anchor,
GNUNET_TIME_relative_subtract (
duration,
overlap_duration));
if (now.abs_value_us > anchor.abs_value_us)
anchor = now;
}
key = GNUNET_new (struct Key);
key->anchor = anchor;
if (GNUNET_OK !=
setup_key (key,
keys_tail))
{
2020-11-23 21:10:55 +01:00
GNUNET_break (0);
2020-11-22 23:31:35 +01:00
GNUNET_free (key);
GNUNET_SCHEDULER_shutdown ();
global_ret = 42;
return GNUNET_SYSERR;
}
return GNUNET_OK;
}
/**
* At what time does the current key set require its next action? Basically,
* the minimum of the expiration time of the oldest key, and the expiration
* time of the newest key minus the #lookahead_sign time.
*/
static struct GNUNET_TIME_Absolute
key_action_time (void)
{
return GNUNET_TIME_absolute_min (
GNUNET_TIME_absolute_add (keys_head->anchor,
duration),
GNUNET_TIME_absolute_subtract (
GNUNET_TIME_absolute_subtract (
GNUNET_TIME_absolute_add (keys_tail->anchor,
duration),
lookahead_sign),
overlap_duration));
}
/**
* The validity period of a key @a key has expired. Purge it.
*
* @param[in] key expired key to purge and free
*/
static void
purge_key (struct Key *key)
{
struct Client *nxt;
for (struct Client *client = clients_head;
NULL != client;
client = nxt)
{
nxt = client->next;
if (GNUNET_OK !=
notify_client_key_del (client,
key))
{
GNUNET_log (GNUNET_ERROR_TYPE_INFO,
"Failed to notify client about purged key, client dropped\n");
}
}
GNUNET_CONTAINER_DLL_remove (keys_head,
keys_tail,
key);
if (0 != unlink (key->filename))
{
GNUNET_log_strerror_file (GNUNET_ERROR_TYPE_ERROR,
"unlink",
key->filename);
}
else
{
GNUNET_log (GNUNET_ERROR_TYPE_INFO,
"Purged expired private key `%s'\n",
key->filename);
}
GNUNET_free (key->filename);
if (0 != key->rc)
{
/* delay until all signing threads are done with this key */
key->purge = true;
return;
}
GNUNET_free (key);
}
/**
* Create new keys and expire ancient keys.
*
* @param cls NULL
*/
static void
update_keys (void *cls)
{
(void) cls;
keygen_task = NULL;
/* create new keys */
while ( (NULL == keys_tail) ||
(0 ==
GNUNET_TIME_absolute_get_remaining (
GNUNET_TIME_absolute_subtract (
GNUNET_TIME_absolute_subtract (
GNUNET_TIME_absolute_add (keys_tail->anchor,
duration),
lookahead_sign),
overlap_duration)).rel_value_us) )
2020-11-23 21:10:55 +01:00
if (GNUNET_OK !=
create_key ())
{
GNUNET_break (0);
GNUNET_SCHEDULER_shutdown ();
return;
}
2020-11-22 23:31:35 +01:00
/* remove expired keys */
while ( (NULL != keys_head) &&
(0 ==
GNUNET_TIME_absolute_get_remaining
(GNUNET_TIME_absolute_add (keys_head->anchor,
duration)).rel_value_us) )
purge_key (keys_head);
keygen_task = GNUNET_SCHEDULER_add_at (key_action_time (),
&update_keys,
NULL);
}
/**
* Parse private key from @a filename in @a buf.
*
* @param filename name of the file we are parsing, for logging
* @param buf key material
* @param buf_size number of bytes in @a buf
*/
static void
parse_key (const char *filename,
const void *buf,
size_t buf_size)
{
struct GNUNET_CRYPTO_EddsaPrivateKey priv;
char *anchor_s;
char dummy;
unsigned long long anchor_ll;
struct GNUNET_TIME_Absolute anchor;
anchor_s = strrchr (filename,
'/');
if (NULL == anchor_s)
{
/* File in a directory without '/' in the name, this makes no sense. */
GNUNET_break (0);
return;
}
anchor_s++;
if (1 != sscanf (anchor_s,
"%llu%c",
&anchor_ll,
&dummy))
{
/* Filenames in KEYDIR must ONLY be the anchor time in seconds! */
GNUNET_log (GNUNET_ERROR_TYPE_WARNING,
"Filename `%s' invalid for key file, skipping\n",
filename);
return;
}
anchor.abs_value_us = anchor_ll * GNUNET_TIME_UNIT_SECONDS.rel_value_us;
if (anchor_ll != anchor.abs_value_us / GNUNET_TIME_UNIT_SECONDS.rel_value_us)
{
/* Integer overflow. Bad, invalid filename. */
GNUNET_log (GNUNET_ERROR_TYPE_WARNING,
"Filename `%s' invalid for key file, skipping\n",
filename);
return;
}
if (buf_size != sizeof (priv))
{
/* Parser failure. */
GNUNET_log (GNUNET_ERROR_TYPE_WARNING,
"File `%s' is malformed, skipping\n",
filename);
return;
}
memcpy (&priv,
buf,
buf_size);
{
struct GNUNET_CRYPTO_EddsaPublicKey pub;
struct Key *key;
struct Key *before;
GNUNET_CRYPTO_eddsa_key_get_public (&priv,
&pub);
key = GNUNET_new (struct Key);
key->exchange_priv.eddsa_priv = priv;
key->exchange_pub.eddsa_pub = pub;
key->anchor = anchor;
key->filename = GNUNET_strdup (filename);
before = NULL;
for (struct Key *pos = keys_head;
NULL != pos;
pos = pos->next)
{
if (pos->anchor.abs_value_us > anchor.abs_value_us)
break;
before = pos;
}
GNUNET_CONTAINER_DLL_insert_after (keys_head,
keys_tail,
before,
key);
GNUNET_log (GNUNET_ERROR_TYPE_INFO,
"Imported key from `%s'\n",
filename);
}
}
/**
* Import a private key from @a filename.
*
* @param cls NULL
* @param filename name of a file in the directory
*/
static int
import_key (void *cls,
const char *filename)
{
struct GNUNET_DISK_FileHandle *fh;
struct GNUNET_DISK_MapHandle *map;
void *ptr;
int fd;
struct stat sbuf;
{
struct stat lsbuf;
if (0 != lstat (filename,
&lsbuf))
{
GNUNET_log_strerror_file (GNUNET_ERROR_TYPE_WARNING,
"lstat",
filename);
return GNUNET_OK;
}
if (! S_ISREG (lsbuf.st_mode))
{
GNUNET_log (GNUNET_ERROR_TYPE_ERROR,
"File `%s' is not a regular file, which is not allowed for private keys!\n",
filename);
return GNUNET_OK;
}
}
fd = open (filename,
O_CLOEXEC);
if (-1 == fd)
{
GNUNET_log_strerror_file (GNUNET_ERROR_TYPE_WARNING,
"open",
filename);
return GNUNET_OK;
}
if (0 != fstat (fd,
&sbuf))
{
GNUNET_log_strerror_file (GNUNET_ERROR_TYPE_WARNING,
"stat",
filename);
return GNUNET_OK;
}
if (! S_ISREG (sbuf.st_mode))
{
GNUNET_log (GNUNET_ERROR_TYPE_ERROR,
"File `%s' is not a regular file, which is not allowed for private keys!\n",
filename);
return GNUNET_OK;
}
if (0 != (sbuf.st_mode & (S_IWUSR | S_IRWXG | S_IRWXO)))
{
/* permission are NOT tight, try to patch them up! */
if (0 !=
fchmod (fd,
S_IRUSR))
{
GNUNET_log_strerror_file (GNUNET_ERROR_TYPE_WARNING,
"fchmod",
filename);
/* refuse to use key if file has wrong permissions */
GNUNET_break (0 == close (fd));
return GNUNET_OK;
}
}
fh = GNUNET_DISK_get_handle_from_int_fd (fd);
if (NULL == fh)
{
GNUNET_log_strerror_file (GNUNET_ERROR_TYPE_WARNING,
"open",
filename);
GNUNET_break (0 == close (fd));
return GNUNET_OK;
}
if (sbuf.st_size > 2048)
{
GNUNET_log (GNUNET_ERROR_TYPE_ERROR,
"File `%s' to big to be a private key\n",
filename);
GNUNET_DISK_file_close (fh);
return GNUNET_OK;
}
ptr = GNUNET_DISK_file_map (fh,
&map,
GNUNET_DISK_MAP_TYPE_READ,
(size_t) sbuf.st_size);
if (NULL == ptr)
{
GNUNET_log_strerror_file (GNUNET_ERROR_TYPE_WARNING,
"mmap",
filename);
GNUNET_DISK_file_close (fh);
return GNUNET_OK;
}
parse_key (filename,
ptr,
(size_t) sbuf.st_size);
GNUNET_DISK_file_unmap (map);
GNUNET_DISK_file_close (fh);
return GNUNET_OK;
}
/**
* Load the various duration values from #kcfg.
*
* @return #GNUNET_OK on success
*/
static int
load_durations (void)
{
if (GNUNET_OK !=
GNUNET_CONFIGURATION_get_value_time (kcfg,
"taler-helper-crypto-eddsa",
"OVERLAP_DURATION",
&overlap_duration))
{
GNUNET_log_config_missing (GNUNET_ERROR_TYPE_ERROR,
"taler-helper-crypto-eddsa",
"OVERLAP_DURATION");
return GNUNET_SYSERR;
}
2020-11-23 21:10:55 +01:00
if (GNUNET_OK !=
GNUNET_CONFIGURATION_get_value_time (kcfg,
"taler-helper-crypto-eddsa",
"DURATION",
&duration))
{
GNUNET_log_config_missing (GNUNET_ERROR_TYPE_ERROR,
"taler-helper-crypto-eddsa",
"DURATION");
return GNUNET_SYSERR;
}
2020-11-22 23:31:35 +01:00
GNUNET_TIME_round_rel (&overlap_duration);
if (GNUNET_OK !=
GNUNET_CONFIGURATION_get_value_time (kcfg,
"taler-helper-crypto-eddsa",
"LOOKAHEAD_SIGN",
&lookahead_sign))
{
GNUNET_log_config_missing (GNUNET_ERROR_TYPE_ERROR,
"taler-helper-crypto-eddsa",
"LOOKAHEAD_SIGN");
return GNUNET_SYSERR;
}
GNUNET_TIME_round_rel (&lookahead_sign);
return GNUNET_OK;
}
/**
* Function run on shutdown. Stops the various jobs (nicely).
*
* @param cls NULL
*/
static void
do_shutdown (void *cls)
{
(void) cls;
if (NULL != read_task)
{
GNUNET_SCHEDULER_cancel (read_task);
read_task = NULL;
}
if (NULL != unix_sock)
{
GNUNET_break (GNUNET_OK ==
GNUNET_NETWORK_socket_close (unix_sock));
unix_sock = NULL;
}
if (0 != unlink (unixpath))
{
GNUNET_log_strerror_file (GNUNET_ERROR_TYPE_WARNING,
"unlink",
unixpath);
}
GNUNET_free (unixpath);
if (NULL != keygen_task)
{
GNUNET_SCHEDULER_cancel (keygen_task);
keygen_task = NULL;
}
if (NULL != done_task)
{
GNUNET_SCHEDULER_cancel (done_task);
done_task = NULL;
}
/* shut down worker threads */
GNUNET_assert (0 == pthread_mutex_lock (&work_lock));
in_shutdown = true;
GNUNET_assert (0 == pthread_cond_broadcast (&work_cond));
GNUNET_assert (0 == pthread_mutex_unlock (&work_lock));
for (unsigned int i = 0; i<num_workers; i++)
GNUNET_assert (0 == pthread_join (workers[i],
NULL));
if (NULL != done_signal)
{
GNUNET_break (GNUNET_OK ==
GNUNET_NETWORK_socket_close (done_signal));
done_signal = NULL;
}
}
/**
* Main function that will be run under the GNUnet scheduler.
*
* @param cls closure
* @param args remaining command-line arguments
* @param cfgfile name of the configuration file used (for saving, can be NULL!)
* @param cfg configuration
*/
static void
run (void *cls,
char *const *args,
const char *cfgfile,
const struct GNUNET_CONFIGURATION_Handle *cfg)
{
(void) cls;
(void) args;
(void) cfgfile;
kcfg = cfg;
if (now.abs_value_us != now_tmp.abs_value_us)
{
/* The user gave "--now", use it! */
now = now_tmp;
}
else
{
/* get current time again, we may be timetraveling! */
now = GNUNET_TIME_absolute_get ();
}
GNUNET_TIME_round_abs (&now);
{
char *pfn;
if (GNUNET_OK !=
GNUNET_CONFIGURATION_get_value_filename (kcfg,
"taler-helper-crypto-eddsa",
"SM_PRIV_KEY",
&pfn))
{
GNUNET_log_config_missing (GNUNET_ERROR_TYPE_ERROR,
"taler-helper-crypto-eddsa",
"SM_PRIV_KEY");
global_ret = 1;
return;
}
if (GNUNET_SYSERR ==
GNUNET_CRYPTO_eddsa_key_from_file (pfn,
GNUNET_YES,
&smpriv.eddsa_priv))
{
GNUNET_log_config_invalid (GNUNET_ERROR_TYPE_ERROR,
"taler-helper-crypto-rsa",
"SM_PRIV_KEY",
"Could not use file to persist private key");
GNUNET_free (pfn);
global_ret = 1;
return;
}
GNUNET_free (pfn);
2020-11-23 21:10:55 +01:00
GNUNET_CRYPTO_eddsa_key_get_public (&smpriv.eddsa_priv,
&smpub.eddsa_pub);
}
2020-11-22 23:31:35 +01:00
if (GNUNET_OK !=
load_durations ())
{
global_ret = 1;
return;
}
if (GNUNET_OK !=
GNUNET_CONFIGURATION_get_value_filename (kcfg,
"taler-helper-crypto-eddsa",
"KEY_DIR",
&keydir))
{
GNUNET_log_config_missing (GNUNET_ERROR_TYPE_ERROR,
"taler-helper-crypto-eddsa",
"KEY_DIR");
global_ret = 1;
return;
}
/* open socket */
{
int sock;
sock = socket (PF_UNIX,
SOCK_DGRAM,
0);
if (-1 == sock)
{
GNUNET_log_strerror (GNUNET_ERROR_TYPE_ERROR,
"socket");
global_ret = 2;
return;
}
{
struct sockaddr_un un;
if (GNUNET_OK !=
GNUNET_CONFIGURATION_get_value_filename (kcfg,
"taler-helper-crypto-eddsa",
"UNIXPATH",
&unixpath))
{
GNUNET_log_config_missing (GNUNET_ERROR_TYPE_ERROR,
"taler-helper-crypto-eddsa",
"UNIXPATH");
global_ret = 3;
return;
}
if (GNUNET_OK !=
GNUNET_DISK_directory_create_for_file (unixpath))
{
GNUNET_log_strerror_file (GNUNET_ERROR_TYPE_WARNING,
"mkdir(dirname)",
unixpath);
}
if (0 != unlink (unixpath))
{
if (ENOENT != errno)
GNUNET_log_strerror_file (GNUNET_ERROR_TYPE_WARNING,
"unlink",
unixpath);
}
memset (&un,
0,
sizeof (un));
un.sun_family = AF_UNIX;
strncpy (un.sun_path,
unixpath,
sizeof (un.sun_path));
if (0 != bind (sock,
(const struct sockaddr *) &un,
sizeof (un)))
{
GNUNET_log_strerror_file (GNUNET_ERROR_TYPE_ERROR,
"bind",
unixpath);
global_ret = 3;
GNUNET_break (0 == close (sock));
return;
}
}
unix_sock = GNUNET_NETWORK_socket_box_native (sock);
}
GNUNET_SCHEDULER_add_shutdown (&do_shutdown,
NULL);
/* Load keys */
GNUNET_break (GNUNET_OK ==
GNUNET_DISK_directory_create (keydir));
GNUNET_DISK_directory_scan (keydir,
&import_key,
NULL);
/* start job to accept incoming requests on 'sock' */
read_task = GNUNET_SCHEDULER_add_read_net (GNUNET_TIME_UNIT_FOREVER_REL,
unix_sock,
&read_job,
NULL);
/* start job to keep keys up-to-date; MUST be run before the #read_task,
hence with priority. */
keygen_task = GNUNET_SCHEDULER_add_with_priority (
GNUNET_SCHEDULER_PRIORITY_URGENT,
&update_keys,
NULL);
2020-11-22 23:31:35 +01:00
/* start job to handle completed work */
{
int fd;
fd = eventfd (0,
EFD_NONBLOCK | EFD_CLOEXEC);
if (-1 == fd)
{
GNUNET_log_strerror (GNUNET_ERROR_TYPE_ERROR,
"eventfd");
global_ret = 6;
GNUNET_SCHEDULER_shutdown ();
return;
}
done_signal = GNUNET_NETWORK_socket_box_native (fd);
}
done_task = GNUNET_SCHEDULER_add_read_net (GNUNET_TIME_UNIT_FOREVER_REL,
done_signal,
&handle_done,
NULL);
/* start crypto workers */
if (0 == num_workers)
num_workers = sysconf (_SC_NPROCESSORS_CONF);
workers = GNUNET_new_array (num_workers,
pthread_t);
for (unsigned int i = 0; i<num_workers; i++)
GNUNET_assert (0 ==
pthread_create (&workers[i],
NULL,
&sign_worker,
NULL));
}
/**
* The entry point.
*
* @param argc number of arguments in @a argv
* @param argv command-line arguments
* @return 0 on normal termination
*/
int
main (int argc,
char **argv)
{
struct GNUNET_GETOPT_CommandLineOption options[] = {
GNUNET_GETOPT_option_timetravel ('T',
"timetravel"),
GNUNET_GETOPT_option_uint ('p',
"parallelism",
"NUM_WORKERS",
"number of worker threads to use",
&num_workers),
GNUNET_GETOPT_option_absolute_time ('t',
"time",
"TIMESTAMP",
"pretend it is a different time for the update",
&now_tmp),
GNUNET_GETOPT_OPTION_END
};
int ret;
(void) umask (S_IWGRP | S_IROTH | S_IWOTH | S_IXOTH);
/* force linker to link against libtalerutil; if we do
not do this, the linker may "optimize" libtalerutil
away and skip #TALER_OS_init(), which we do need */
GNUNET_OS_init (TALER_project_data_default ());
GNUNET_assert (GNUNET_OK ==
GNUNET_log_setup ("taler-helper-crypto-eddsa",
"WARNING",
NULL));
now = now_tmp = GNUNET_TIME_absolute_get ();
ret = GNUNET_PROGRAM_run (argc, argv,
"taler-helper-crypto-eddsa",
"Handle private EDDSA key operations for a Taler exchange",
options,
&run,
NULL);
if (GNUNET_NO == ret)
return 0;
if (GNUNET_SYSERR == ret)
return 1;
return global_ret;
}