diff options
Diffstat (limited to 'doc/paper/taler.tex')
| -rw-r--r-- | doc/paper/taler.tex | 11 | 
1 files changed, 10 insertions, 1 deletions
diff --git a/doc/paper/taler.tex b/doc/paper/taler.tex index 313954f3..4a652542 100644 --- a/doc/paper/taler.tex +++ b/doc/paper/taler.tex @@ -795,7 +795,7 @@ To withdraw anonymous digital coins, the customer first selects an  exchange and one of its public denomination public keys $K_p$ whose  value $K_v$ corresponds to an amount the customer wishes to withdraw.  We let $K_s$ denote the exchange's private key corresponding to $K_p$. -We use $FDH_K$ to denote a full-domain hash where the domain is the +We use $\FDH_K$ to denote a full-domain hash where the domain is the  public key $K_p$.  Now the customer carries out the following  interaction with the exchange: @@ -1402,6 +1402,14 @@ The merchant can issue refunds, and only to the original customer.  \section{Implementation} +\begin{figure} +  \includegraphics[width=\columnwidth]{taler-arch-full.pdf} +  \caption{The different components of the Taler system in the +    context of a banking system providing money creation, +    wire transfers and authentication. (Auditor omitted.)} +\end{figure} + +  \section{Experimental results}  %\begin{figure}[b!] @@ -1626,6 +1634,7 @@ data being persisted are represented in between $\langle\rangle$.    \item[$K_s$]{Denomination private (RSA) key of the exchange used for coin signing}    \item[$K_p$]{Denomination public (RSA) key corresponding to $K_s$}    \item[$K$]{Public-priate (RSA) denomination key pair $K := (K_s, K_p)$} +  \item[$\FDH_K$]{Full domain hash over the modulus of the public key of $K$}    \item[$b$]{RSA blinding factor for RSA-style blind signatures}    \item[$B_b()$]{RSA blinding over the argument using blinding factor $b$}    \item[$U_b()$]{RSA unblinding of the argument using blinding factor $b$}  | 
