auditor/cmd/taler-auditor-offline-signing/main.go

775 lines
19 KiB
Go

/*
taler-auditor-offline will become a standalone offline signing tool for GNU
Taler. It is an implementation in Go of
https://git.taler.net/exchange.git/tree/src/exchange-tools/taler-auditor-offline.c
in order to simplify portability (to ARM f.e.).
TODOs:
- [x] implement TALER_exchange_offline_denom_validity_verify
- [x] implement TALER_auditor_denom_validity_sign
- [x] implement JSON-encoding of
- [x] hashes
- [x] keys
- [x] signatures
- [x] implement show (print public key)
- [ ] implement setup (create private key)
- [ ] implement a robust and zero-cost marshalling abstraction
- [ ] factor out types and helper functions to own package codeblau.de/taler
*/
package main
import (
"bytes"
"crypto/ed25519"
"crypto/rsa"
"crypto/sha512"
"encoding/binary"
"encoding/json"
"flag"
"fmt"
"io/ioutil"
"log"
"math/big"
"os"
"regexp"
"strconv"
)
var be = binary.BigEndian
type Input struct {
Operation string `json:"operation"`
Arguments struct {
Version string `json:"version"`
Currency string `json:"currency"`
MasterPublicKey EdDSAPublicKey `json:"master_public_key"`
ReserveClosingDelay RelativeTime `json:"reserve_closing_delay"`
Signkeys []SignKey `json:"signkeys"`
Denoms []DenomKey `json:"denoms"`
Auditors []Auditor `json:"auditors"`
// Recoup []??? `json:"recoup"`
} `json:"arguments"`
}
type SignKey struct {
MasterSig EdDSASignature `json:"master_sig"`
StampStart AbsoluteTime `json:"stamp_start"`
StampExpire AbsoluteTime `json:"stamp_expire"`
StampEnd AbsoluteTime `json:"stamp_end"`
Key EdDSAPublicKey `json:"key"`
}
type DenomKey struct {
DenomPub RSAPublicKey `json:"denom_pub"`
Value Amount `json:"value"`
FeeWithdraw Amount `json:"fee_withdraw"`
FeeDeposit Amount `json:"fee_deposit"`
FeeRefresh Amount `json:"fee_refresh"`
FeeRefund Amount `json:"fee_refund"`
StampStart AbsoluteTime `json:"stamp_start"`
StampExpireWithdraw AbsoluteTime `json:"stamp_expire_withdraw"`
StampExpireDeposit AbsoluteTime `json:"stamp_expire_deposit"`
StampExpireLegal AbsoluteTime `json:"stamp_expire_legal"`
MasterSig EdDSASignature `json:"master_sig"`
}
type Auditor struct {
AuditorName string `json:"auditor_name"`
AuditorPub EdDSAPublicKey `json:"auditor_pub"`
AuditorUrl string `json:"auditor_url"`
DenominationKeys []struct {
DenomPubH SHA512Hash `json:"denom_pub_h"`
AuditorSig EdDSASignature `json:"auditor_sig"`
} `json:"denomination_keys"`
}
var zeroes = [32]byte{0}
func (in *Input) checkAuditor(url string, local EdDSAPublicKey) (skip map[SHA512Hash]bool, e error) {
var idx = -1
for i, au := range in.Arguments.Auditors {
if au.AuditorUrl == url && au.AuditorPub.Equal(ed25519.PublicKey(local)) {
idx = i
break
} else if au.AuditorUrl == url {
return nil, fmt.Errorf("Public key mismatch for auditor %q! Local: %s, JSON: %s\n", url, local, au.AuditorPub)
} else if au.AuditorPub.Equal(ed25519.PublicKey(local)) {
return nil, fmt.Errorf("URL mismatch auditor with pub-key %s! Local: %v, JSON: %v\n", au.AuditorPub, url, au.AuditorUrl)
}
}
if idx == -1 {
return nil, fmt.Errorf("No such auditor found! URL: %q, PubKey: %v\n", url, local)
}
skip = make(map[SHA512Hash]bool)
for _, key := range in.Arguments.Auditors[idx].DenominationKeys {
if !bytes.Equal(zeroes[:], key.AuditorSig.R) {
// ignore this denom in output, as it has been signed already.
skip[key.DenomPubH] = true
}
}
return skip, nil
}
type AbsoluteTime struct {
// TODO: en-/decode "never"
TMs uint64 `json:"t_ms"`
}
type RelativeTime struct {
// TODO: en-/decode "forever"
DMs uint64 `json:"d_ms"`
}
type EdDSAPublicKey ed25519.PublicKey
func (ep *EdDSAPublicKey) Equal(p ed25519.PublicKey) bool {
return ((*ed25519.PublicKey)(ep)).Equal(p)
}
func (ep *EdDSAPublicKey) UnmarshalJSON(in []byte) (e error) {
var buf []byte
// decode crockford.base32
if buf, e = crockfordDecode(bytes.Trim(in, `"`)); e != nil {
return fmt.Errorf("couldn't decode EncodedRSAPublicKey as crockford.base32: %v (%v)", e, string(in))
}
*ep = EdDSAPublicKey(buf)
return nil
}
func (ep *EdDSAPublicKey) MarshalJSON() ([]byte, error) {
enc, e := crockfordEncode([]byte(*ep))
if e != nil {
return nil, e
}
buf := make([]byte, len(enc)+2)
buf[0] = '"'
buf[len(buf)-1] = '"'
copy(buf[1:], enc)
return buf, nil
}
func (ep EdDSAPublicKey) String() string {
enc, err := crockfordEncode([]byte(ep))
if err != nil {
return fmt.Sprintf("[error crockfordEncode:%v] pub:%v", err, []byte(ep))
}
return string(enc)
}
const CURRENCY_LEN = 12
type Amount struct {
Value uint64 `json:"value"`
Fraction uint32 `json:"fraction"`
Currency [CURRENCY_LEN]byte `json:"currency"`
}
// Amount comes in as something like "CHF:0.32"
// see https://docs.taler.net/core/api-common.html#amounts
var nonAllowedCharsRX = regexp.MustCompile("[^a-zA-Z]")
func (a *Amount) UnmarshalJSON(in []byte) (e error) {
// split and parse Currency
parts := bytes.Split(bytes.Trim(in, `"`), []byte(":"))
if len(parts) != 2 {
return fmt.Errorf("invalid amount sequence")
} else if len(parts[0]) >= CURRENCY_LEN || nonAllowedCharsRX.Match(parts[0]) {
return fmt.Errorf("invalid currency")
}
copy(a.Currency[:], parts[0][:])
// split and parse Value
parts = bytes.Split(parts[1], []byte("."))
if len(parts) > 2 || len(parts[0]) == 0 {
return fmt.Errorf("invalid decimal value")
} else if a.Value, e = strconv.ParseUint(string(parts[0]), 10, 64); e != nil {
return e
} else if a.Value > 2<<52 {
return fmt.Errorf("decimal value too large")
}
// parse Fraction
if len(parts) == 2 {
if len(parts[1]) == 0 || len(parts[1]) > 8 {
return fmt.Errorf("invalid fraction")
} else if a.Fraction, e = parseFraction(parts[1]); e != nil {
return e
}
}
return nil
}
// following exchange/src/util/amount.c TALER_string_to_amount()
func parseFraction(input []byte) (uint32, error) {
const TALER_AMOUNT_FRAC_BASE = 100_000_000
b := uint32(TALER_AMOUNT_FRAC_BASE / 10)
var f uint32
for _, c := range input {
if b == 0 {
return 0, fmt.Errorf("fractional value too small")
}
if c < '0' || c > '9' {
return 0, fmt.Errorf("invalid fractional value")
}
f += uint32(c-'0') * b
b /= 10
}
return f, nil
}
func (a *Amount) Binary() []byte {
buf := make([]byte, 8+4+CURRENCY_LEN)
be.PutUint64(buf, a.Value)
be.PutUint32(buf[8:], a.Fraction)
copy(buf[8+4:], a.Currency[:CURRENCY_LEN])
return buf
}
type EdDSASignature struct {
R []byte `json:"r"`
S []byte `json:"s"`
}
// copy of GNUNET_STRINGS_string_to_data from gnunet/src/util/strings.c
func crockfordDecode(enc []byte) ([]byte, error) {
if len(enc) == 0 {
return nil, nil
}
out_size := (len(enc) * 5) / 8
if out_size > 2<<24 {
return nil, fmt.Errorf("input too large")
}
var (
out = make([]byte, out_size)
encoded_len = out_size * 8
rpos = len(enc)
vbit, bits, ret, shift int
)
if encoded_len%5 > 0 {
vbit = encoded_len % 5 // padding! !?
shift = 5 - vbit
rpos--
ret = getValue(enc[rpos])
bits = ret >> shift
} else {
vbit = 5
shift = 0
rpos--
ret = getValue(enc[rpos])
bits = ret
}
if ((encoded_len + shift) / 5) != len(enc) {
return nil, fmt.Errorf("encoding length mismatch: %d vs %d (%v)", (encoded_len+shift)/5, len(enc), enc)
} else if ret == -1 {
return nil, fmt.Errorf("invalid character? getValue returned -1")
}
for wpos := out_size; wpos > 0; {
if 0 == rpos {
return nil, fmt.Errorf("incomplete encoding")
}
rpos--
ret = getValue(enc[rpos]) << vbit
bits = ret | bits
if -1 == ret {
return nil, fmt.Errorf("incorrect encoding")
}
vbit += 5
if vbit >= 8 {
wpos--
out[wpos] = byte(bits)
bits >>= 8
vbit -= 8
}
}
if 0 != rpos || 0 != vbit {
return nil, fmt.Errorf("incorrectly ended")
}
return out, nil
}
func getValue(a byte) int {
// exluded letters
switch a {
case '0', 'o':
a = '0'
case 'i', 'I', 'l', 'L':
a = '1'
case 'u', 'U':
a = 'V'
}
if a >= '0' && a <= '9' {
return int(a - '0')
}
if a >= 'a' && a <= 'z' {
a = a - 'a' + 'A'
}
dec := 0
if a >= 'A' && a <= 'Z' {
if 'I' < a {
dec++
}
if 'L' < a {
dec++
}
if 'O' < a {
dec++
}
if 'U' < a {
dec++
}
return int(a) - 'A' + 10 - dec
}
return -1
}
// Copy of GNUNET_STRINGS_data_to_string from gnunet/src/util/strings.c
func crockfordEncode(in []byte) ([]byte, error) {
const encTable = "0123456789ABCDEFGHJKMNPQRSTVWXYZ"
var (
out []byte
rpos, bits, vbit int
)
for rpos < len(in) || vbit > 0 {
if rpos < len(in) && vbit < 5 {
bits = (bits << 8) | int(in[rpos]) // eat 8 more bits
rpos++
vbit += 8
}
if vbit < 5 {
bits <<= (5 - vbit) // zero-padding
if vbit != (len(in)*8)%5 {
return nil, fmt.Errorf("vbit (%d) != (len(in)*8)%%5 (%d)", vbit, (len(in)*8)%5)
}
vbit = 5
}
vbit -= 5
out = append(out, encTable[(bits>>vbit)&31])
}
return out, nil
}
func (es *EdDSASignature) UnmarshalJSON(in []byte) (e error) {
var buf []byte
// Decode crockford.base32, the Taler flavour
if buf, e = crockfordDecode(bytes.Trim(in, `"`)); e != nil {
return fmt.Errorf("couldn't decode EdDSASignature as crockford.base32: %v (%v)", e, string(in))
} else if len(buf) != 64 {
return fmt.Errorf("unknown data as signature: %v", buf)
}
es.R = buf[0:32]
es.S = buf[32:64]
return nil
}
func (es *EdDSASignature) MarshalJSON() (b []byte, e error) {
var buf = make([]byte, len(es.R)+len(es.S))
copy(buf, es.R)
copy(buf[len(es.R):], es.S)
enc, err := crockfordEncode(buf)
if err != nil {
return nil, err
}
b = make([]byte, len(enc)+2)
b[0] = '"'
b[len(b)-1] = '"'
copy(b[1:], enc)
return b, nil
}
func (es *EdDSASignature) BinaryMarshal() []byte {
var buf = make([]byte, len(es.R)+len(es.S))
copy(buf, es.R)
copy(buf[len(es.R):], es.S)
return buf
}
type RSAPublicKey rsa.PublicKey
// following gnunet/src/json/json_helper.c and gnunet/src/util/crypto_rsa.c
func (ep *RSAPublicKey) UnmarshalJSON(in []byte) (e error) {
var buf []byte
// 1. decode crockford.base32, the Taler flavour
if buf, e = crockfordDecode(bytes.Trim(in, `"`)); e != nil {
return fmt.Errorf("couldn't decode EncodedRSAPublicKey as crockford.base32: %v (%v)", e, string(in))
}
// 2. parse header
if len(buf) < 4 {
return fmt.Errorf("byte array too small for RSA public key header")
}
modulus_length, public_exponent_length := binary.BigEndian.Uint16(buf[0:]), binary.BigEndian.Uint16(buf[2:])
if len(buf[4:]) != int(modulus_length)+int(public_exponent_length) {
return fmt.Errorf("byte array has wrong size according to encoded length's for modulus and public exponent")
}
// 3. parse RSA public key
// Consult _gcry_mpi_set_buffer from libgcrypt-1.9.4/mpi/mpicoder.c
buf = buf[4:]
ep.N = big.NewInt(0).SetBytes(buf[:modulus_length])
buf = buf[modulus_length:]
ex := big.NewInt(0).SetBytes(buf[:public_exponent_length]) // binary.BigEndian.Uint64 instead?
if !ex.IsInt64() {
return fmt.Errorf("public exponent is not int64")
}
ep.E = int(ex.Int64())
return nil
}
func (ep *RSAPublicKey) Binary() []byte {
nb := ep.N.Bytes()
eb := big.NewInt(int64(ep.E)).Bytes()
if len(nb) > 2<<16-1 || len(eb) > 2<<16-1 {
panic("values too large")
}
buf := make([]byte, 4+len(nb)+len(eb))
binary.BigEndian.PutUint16(buf, uint16(len(nb)))
binary.BigEndian.PutUint16(buf[2:], uint16(len(eb)))
copy(buf[4:], nb)
copy(buf[4+len(nb):], eb)
return buf
}
func (ep *RSAPublicKey) MarshalJSON() (b []byte, e error) {
buf := ep.Binary()
enc, err := crockfordEncode(buf)
if err != nil {
return nil, err
}
b = make([]byte, len(enc)+2)
b[0] = '"'
b[len(b)-1] = '"'
copy(b[1:], enc)
return b, nil
}
type Output []SignOperation
type SignOperation struct {
Operation string `json:"operation"`
Arguments struct {
HDenomPub SHA512Hash `json:"h_denom_pub"`
AuditorSig EdDSASignature `json:"auditor_sig"`
} `json:"arguments"`
}
type SHA512Hash [sha512.Size]byte
func (h *SHA512Hash) UnmarshalJSON(in []byte) (e error) {
var buf []byte
// decode crockford.base32
if buf, e = crockfordDecode(bytes.Trim(in, `"`)); e != nil {
return fmt.Errorf("couldn't decode SHA512 as crockford.base32: %v (%v)", e, string(in))
}
copy([]byte(h[:]), buf[:sha512.Size])
return nil
}
func (h *SHA512Hash) MarshalJSON() ([]byte, error) {
enc, err := crockfordEncode((*h)[:])
if err != nil {
return nil, fmt.Errorf("error encoding %v: %e\n", h, err)
}
b := make([]byte, len(enc)+2)
b[0] = '"'
b[len(b)-1] = '"'
copy(b[1:], enc)
return b, nil
}
func (h SHA512Hash) String() string {
enc, err := crockfordEncode(h[:])
if err != nil {
fmt.Sprintf("[error encoding: %e] %v", err, h[:])
}
return string(enc)
}
func Verify(denom *DenomKey, master *EdDSAPublicKey, sig []byte) bool {
const TALER_SIGNATURE_MASTER_DENOMINATION_KEY_VALIDITY = 1025
/*
data := struct {
size uint32
purpose uint32
master EdDSAPublicKey
start AbsoluteTime
expire_withdraw AbsoluteTime
expire_deposit AbsoluteTime
expire_legal AbsoluteTime
value Amount
fee_withdraw Amount
fee_deposit Amount
fee_refresh Amount
fee_refund Amount
denom_hash SHA512Hash
}{
size: 4 + 4 + ed25519.PublicKeySize + 4*8 + 5*(8+4+len(denom.Value.Currency)) + sha512.Size,
purpose: TALER_SIGNATURE_MASTER_DENOMINATION_KEY_VALIDITY,
master: input.Arguments.MasterPublicKey,
}
*/
size := 4 + // size
4 + // purpose
ed25519.PublicKeySize + // master
4*8 + // start and expire*
5*(8+4+CURRENCY_LEN) + // value and fee*
sha512.Size // denomHash
buf := make([]byte, size)
n := 0
be.PutUint32(buf[n:], uint32(size))
n += 4
be.PutUint32(buf[n:], TALER_SIGNATURE_MASTER_DENOMINATION_KEY_VALIDITY)
n += 4
copy(buf[n:], *master)
n += len(*master)
for _, v := range []uint64{
denom.StampStart.TMs,
denom.StampExpireWithdraw.TMs,
denom.StampExpireDeposit.TMs,
denom.StampExpireLegal.TMs,
} {
be.PutUint64(buf[n:], v*1000) // milli -> micro
n += 8
}
for _, f := range [](func() []byte){
denom.Value.Binary,
denom.FeeWithdraw.Binary,
denom.FeeDeposit.Binary,
denom.FeeRefresh.Binary,
denom.FeeRefund.Binary,
} {
v := f()
copy(buf[n:], v)
n += len(v)
}
bin := denom.DenomPub.Binary()
hash := sha512.Sum512(bin)
copy(buf[n:], hash[:])
return ed25519.Verify(ed25519.PublicKey(*master), buf, sig)
}
func SignDenom(denom *DenomKey, ahash SHA512Hash, master *EdDSAPublicKey, pk *ed25519.PrivateKey) (SHA512Hash, EdDSASignature) {
const TALER_SIGNATURE_AUDITOR_EXCHANGE_KEYS = 1064
/*
We write a bigendian encoded version of ExchangeKeyValidityPS.
type Purpose uint32
type ExchangeKeyValidityPS struct {
size uint32
purpose Purpose
auditor_url_hash SHA512Hash
master EdDSAPublicKey
start AbsoluteTime
expireWithdraw AbsoluteTime
expireDeposit AbsoluteTime
expireLegal AbsoluteTime
value Amount
feeWithdraw Amount
feeDeposit Amount
feeRefresh Amount
feeRefund Amount
denomHash SHA512Hash
}
*/
size := 4 + // size
4 + // purpose
sha512.Size + // auditor_url_hash
ed25519.PublicKeySize + // master
4*8 + // start and expire*
5*(8+4+CURRENCY_LEN) + // value and fee*
sha512.Size // denomHash
buf := make([]byte, size)
n := 0
be.PutUint32(buf[n:], uint32(size))
n += 4
be.PutUint32(buf[n:], TALER_SIGNATURE_AUDITOR_EXCHANGE_KEYS)
n += 4
copy(buf[n:], ahash[:])
n += len(ahash)
copy(buf[n:], *master)
n += len(*master)
for _, v := range []uint64{
denom.StampStart.TMs,
denom.StampExpireWithdraw.TMs,
denom.StampExpireDeposit.TMs,
denom.StampExpireLegal.TMs,
} {
be.PutUint64(buf[n:], v*1000) // milli -> micro
n += 8
}
for _, f := range [](func() []byte){
denom.Value.Binary,
denom.FeeWithdraw.Binary,
denom.FeeDeposit.Binary,
denom.FeeRefresh.Binary,
denom.FeeRefund.Binary,
} {
v := f()
copy(buf[n:], v)
n += len(v)
}
bin := denom.DenomPub.Binary()
// Future:
// bin = append(bin, 0, 0, 0, 0) // age mask
// bin = append(bin, 0, 0, 0, 1) // cipher == RSA
hash := sha512.Sum512(bin)
copy(buf[n:], hash[:])
sig := ed25519.Sign(*pk, buf)
return hash, EdDSASignature{R: sig[:32], S: sig[32:]}
}
func Sign(input *Input, skip map[SHA512Hash]bool, url string, pk ed25519.PrivateKey) ([]SignOperation, error) {
output := []SignOperation{}
for i, denom := range input.Arguments.Denoms {
if !Verify(&denom, &input.Arguments.MasterPublicKey, denom.MasterSig.BinaryMarshal()) {
return nil, fmt.Errorf("couldn verify denomination no. %d: %v", i+1, denom.DenomPub)
}
hash, sig := SignDenom(&denom, sha512.Sum512(append([]byte(url), 0)), &input.Arguments.MasterPublicKey, &pk)
if skip[hash] {
log.Printf("Skipping denom_pub_h %q as it has been already signed\n", hash)
continue
}
o := SignOperation{Operation: "auditor-sign-denomination-0"}
o.Arguments.HDenomPub = hash
o.Arguments.AuditorSig = sig
output = append(output, o)
}
return output, nil
}
var (
injson = flag.String("input", "-", "input json for signing")
keyfile = flag.String("key", "auditor.key", "filename of EC25519 private key")
url = flag.String("url", "https://auditor.codeblau.de/", "auditor url")
)
func main() {
flag.Usage = func() {
fmt.Fprintf(flag.CommandLine.Output(), "Usage of %s:\n %s [Options] (show|sign)\nOptions:\n", os.Args[0], os.Args[0])
flag.PrintDefaults()
}
flag.Parse()
if len(flag.Args()) == 0 {
flag.Usage()
os.Exit(1)
}
if len(*keyfile) == 0 {
log.Println("keyfile needed")
return
}
k, e := ioutil.ReadFile(*keyfile)
if e != nil {
log.Printf("couldn't read keyfile: %v\n", e)
return
}
pk := ed25519.NewKeyFromSeed(k)
pub := (pk.Public()).(ed25519.PublicKey)
pe, _ := crockfordEncode(pub)
switch flag.Arg(0) {
case "show":
fmt.Printf("public key: %s\n", string(pe))
case "sign":
var dec *json.Decoder
input := new(Input)
if *injson == "-" || *injson == "" {
dec = json.NewDecoder(os.Stdin)
} else {
f, e := os.Open(*injson)
if e != nil {
log.Fatal(e)
}
defer f.Close()
dec = json.NewDecoder(f)
}
e = dec.Decode(input)
if e != nil {
log.Fatal(e)
}
var skip map[SHA512Hash]bool
skip, e = input.checkAuditor(*url, EdDSAPublicKey(pub))
if e != nil {
log.Fatal(e)
}
output, err := Sign(input, skip, *url, pk)
if err != nil {
log.Fatalf("error signing: %v", err)
}
enc := json.NewEncoder(os.Stdout)
enc.SetIndent("", " ")
e = enc.Encode(output)
if e != nil {
log.Fatal(e)
}
default:
flag.Usage()
os.Exit(2)
}
}