Making Pictures With GNU PIC

Eric S. Raymond

<esr@snark.thyrsus.com>

ABSTRACT

Thepic language is &off extension that mads it easy to create and alter box-and-
arrav diagrams of the kind frequently used in technical papers atiabteks. Thigpaper
is both an introduction to and referencedpic(1), the implementation distributed by the
Free Software Foundation for use wgtoff(1).

1. Introduction to PIC

1.1. Why PIC?

Thepic language provides an easy way to write procedural box-ang-eiggrams to be included in
troff documents. Thi&anguage is sufficiently flexible to be quite useful for state charts, Petri-net diagrams,
flow charts, simple circuit schematics, jumper layouts, and other kinds of illustratiaiimng repetitive
uses of simple geometric forms and splines. Because these descriptions are procedural and object-based,
they are both compact and easy to modify.

The gpic(1) implementation opic is distributed by the Free Software Foundation for use with their
groff(1) implementation ofroff. Because both implementations are widekgilable in source form for
free, thg are good bets for writing very portable documentation.

1.2. PICVersions

The original 1984 prelitroff(1) version ofpic is long obsolete. The rewritten 1991 version is still
awailable as part of the DocumengWork Bench module of System V.

Where differences between DocumergteWork Bench (1991)pic and GNU pic need to be
described, originapic is referred to as "W/B pic". Details on the history of the program areegiat the
end of this document.

In this document, thgpic(1) extensions will be marked as such.

2. Invoking PIC

Every pic description is a little program, which gets compiledpig(1) into gtroff(1) macros.Pro-
grams that process or displgiyoff(1) output need not kmoor care that parts of the imagedaa life aspic
descriptions.

The pic(1) program tries to translate yahing betweenPS and .PE marlers, and passes through
evaything else. The normal definitions dtfSand.PE in the msmacro package and elsewhereeéhdso
the side-effect of centering tipéc output on the page.

Other details of thigt]roff (1) interface

2.1. PICError Messages

If you male apic syntax errgrgpic(1) will issue an error message in the standgafl)-like syntax.
A typical error message looks dikhis,



pic:pic.ms:<nnn>: parse error before ‘<token>’
pic:pic.ms:<nnn>: giving up on this picture

where <nnn> is a line numhend <token> is a token near (usually just after) the error location.

3. BasicPIC Concepts

Pictures are described procedurallg ollections of objects connected by motioridormally, pic
tries to string together objects left-to-right in the sequengeatieedescribed, joining them at visually natu-
ral points. Here is an example illustrating thevflof data inpic processing:

gpictt) |——wy IO L gt

Figure 3-1: Flav of pic data

This was produced from the followingc program:

.PS

ellipse "document”;
arrow;

box "\flpic\fP(1)"
arrow;

box width 1.2 "\flgtbI\fP(1) or \flgegn\fP(1)" "(optional)" dashed;
arrow;

box "\figtroff\fP(1)";
arrow;

ellipse "PostScript”
.PE

This little program illustrates seral pic basics. Firstlywe e hav to invoke three object types; ellipses,
arrons, and bogs. W& ®e hav to declare t&t lines to go within an object (and that text canehfont
changes in it).We e hav to change the line style of an object from solid to dashed. And we see that a
box can be made wider than its default size to accommodate mbfeed| discuss this facility in detail in

the next section).

We dso get to se@ic’s smple syntax. Statements are ended bwlmes or semicolons.String
guotes are required around akttarguments, whether or not theontain spaces. In general, the order of
command arguments and modifierllkidth 1.2" or "dashed" doednhatter except that the order ofxe
arguments is significant.

Here are all but one of the bagic objects at their default sizes:

line arrow j
box _— —_—
arc

Figure 3-2: Basipic objects

The missing simple object type ispline There is also a way to collect objects ibtod compos-
ites which allows you to treat the whole group as a single object (resembling a box) fppuanpases.
WEe'll describe both of these later on.

The box, ellipse, circle, and block composite objectschreed lines, arrows, arcs and splines are
open This distinction will often be important in explaining command modifiers.



Figure 3-2 was produced by the followipig program, which introduces some more basic concepts:

.PS

box "box";
move;

line "line" ";
move;

arrow "arrow" "";
move;

circle "circle";
move;

ellipse "ellipse";
move;

arc; down; move; "arc"
.PE

The first thing to notice is thmovecommand, which maes a cfault distance (1/2 inch) in the eur
rent moement direction.

Secondly see hav we can also decorate lines and arrows witkt.teTheline and arrav commands
each tak two aguments here, specifying text to go aband belav the object. If you wonder wly one
argument would not do, contemplate the outpurobw "ow!" :

—owl e

Figure 3-3: '&xt centered on an arrow

When a command takes one text stripig,tries to place it at the objestieometric centerAs you
add more stringgic treats them as a vertical block to be centered. The program

line "1";

line "1" "2";

line "1" "2" "3";

line "1" "2" "3" "4";
line "1" "2" "3" "4" "5";

for example, gies you this:

1
1
1 2
1 ; 2 g 3
3 4 4
5

Figure 3-4: Effects of multiple text arguments

The last line of Figure 3.2'program, arc; down; move; " arc"’, describing the captioned arc, intro-
duces seeral nev ideas. Firstlywe e hav to change the direction in which objects are joined. Had we
written arc; move; " arc", omitting down the caption would he been joined to the top of the arc,dik

this:



arc

)

Figure 3-5: Result odirc; move;

This is because drawing an arc changes thauttedirection to the one its exit end points &b. rein-
force this point, consider:

arc

Figure 3-6: Result adirc cw; move;

All we've done differently here is specify "cw" for a clockwise af@bsere how it changes the
default direction to down, rather than up.

Another good way to see this via with the following program:

line; arc; arc cw; line

which yields:

Figure 3-7: Result dfne; arc; arc ow; line

Notice that we did not ve to specify "up" for the second arc to be joined to the end of the first.

Finally, obsene that a string, alone, is treated as text to be surrounded by an invisible box of a size
either specified by width and height attities or by the defiltstextwid andtextht. Both are initially zero
(because we donknow the default font size).

4. Sizesand Spacing

Sizes are specified in inche.you dont like inches, it5 possible to set a global stylanablescale
that changes the uniSettingscale = 2.54will effectively change the internal unit to centimeters (all other
size variable valuess will be scaled correspondingly).

4.1.
Here are the default sizes fuic objects:



Object | Default Size

box 0.75"wide by 0.5" high
circle 0.5"diameter

ellipse 0.75'wide by 0.5" high
arc 0.5"radius

line 0.5"long

arron 0.5" long

The simplest way to think about these defaults is thatrtfede the other basic objects fit snugly into
a default-sized box.

4.2. ObjectsDo Not Stretch!

Text is rendered in the current font with normal friohe spacing.Boxes, circles, and ellipses dot
automatically resize to fit enclosedte Thus,if you saybox "text far too long" you'll get this:

this text is far too long for a default box

Figure 4-1: Boxes do not automatically resize

which is probably not the effect you want.

4.3. ResizingBoxes
To change the box size, you can specify a box width with the "width" modifier:

this text is far too long for a default box

Figure 4-2: Result dbox width 3

This modifier takes a dimension in inch&here is also a "height" modifier that will change a box’
height. Thewidth keyword may be abbreviated éwid; the height keyword toheight.

4.4. ResizingOther Object Types

To change the size of a circleygiit arad or diam modifier; this changes the radius or diameter of
the circle, according to the numeric argument that follows.

0 ® (v

Figure 4-3: Circles with increasing radii

The move command can also taka dmension, which just tells it ko marny inches to mee in the
current direction.

Ellipses are sized to fit in the rectangular box defined by thes, @and can be resized withdth
andheight like boxes.



You can also change the radius of curvature of an arcraithi\which specifies the radius of the-cir
cle of which the arc is agemment). Lager values yield flatter arcs.

./
0.1 0.2 0.3

Figure 4-4:arc rad with increasing radi

Obsenre that because an arc is defined as a quarter circle, increasing the radius also increases the size
of the arc$ bounding box.

4.5. The'same’ Keyword
In place of a dimension specification, you can use ¢yedrd same This gives the object the same
size as the previous one of its type. As an example, the program

.PS
box; box wid 1 ht 1; box same; box
.PE

gives you

Figure 4-5: Thesamekeyword

5. GeneralizedLines and Splines

5.1. DiagonalLines

It is possible to specify diagonal lines or arrows by adding muliipJelown, left, and right modi-
fiers to the line objectAny of these can hee a nultiplier. To understand the effects, think of the whiag
area as being gridded with standard-sized boxes.

line up left arrow up left 1 arrow up left 1.5 arrow up left 2

Figure 5-1: Diagonal arrows (dotted boxeswlioe implied 0.5-inch grid)

5.2. Multi-SegmentLine Objects

A "line" or "arrow" object may actually be a path consisting gf mmmber of segments ofawying
lengths and directionsTo describe a path, connectvegl line or arrav commands with thedgword then.



Figure 5-21ine right 1 then down .5 left 1 then right 1

5.3. SplineObjects
If you start a path with thepline keyword, the path vertices are treated as control points for a spline

cunwve fit.
Z |
3 .2 (

The spline curve... ...with tangents displayed

Figure 5-3:spline right 1 then down .5 left 1 then right 1

You can describe mamatural-looking but irregular curves this wdpr example:

C O\

spline right then up then left then down ->; spline left then up right then down right ->;

Figure 5-4: Wo more spline examples

Note the arrer decorations. Arretheads can be applied naturally toy gnath-based object, line or
spline. W'll see haev in the next section.

6. DecoratingObijects.

6.1. DashedObjects

We've already seen that the modifidashedcan change the line style of an object from solid to
dashed. GNWpic permits you to dot or dash ellipses, circles, and arcs (and splingsmnde only);
some versions of DWB may only permit dashing of lines anésioi’s possible to change the dash inter
val by specifying a number after the modifier.

r———---- 1 r———---- 1 fﬁi_} ’77—1 ’702—‘

| | | |
| default ! 005 ! 01 | 0.15
| | | |

L | L | Lo ] L ] L.J

Figure 6-1: Dashed objects

6.2. DottedObjects

Another &ailable qualifier isdotted. GNU gpic permits you to dot or dash ellipses, circles, and arcs
(and splines inx mode only); somearsions of DWB may only permit dashing of lines anddsoxittoo
can be suffixed with a number to specify the interval between dots:



default 0.05 0.1 0.15 0.2

Figure 6-2: Dotted objects

6.3. RoundingBox Corners
It is also possible, in GNdpic only, to modify a box so it has rounded corners

rad 0.05 rad=0.15

Figure 6-3:box rad with increasing radius values;

Radius values higher than half the minimum box dimension are silently truncated to that value.

6.4. Arrowheads

Lines and arcs can be decorated as waily line or arc (and gnspline as well) can be decorated
with arrowheads by adding one or more as modifiers:

-

Figure 6-4: Double-headed line made withe <- ->

In fact, thearrow command is just shorthand ftine ->. And there is a double-head modifier <->,
so the figure ab@ muld hare been made witiwline <->

Arrowheads hae awidth attribute, the distance across the rear; aheight attribute, the length of
the arrowhead along the shaft.

Arrowhead style is controlled by the stylariablearrowhead The DWB and GNU versions inter
pret it differently DWB defaults to open arrowheads andaamowhead value of 2; the Kernighan paper
says a value of 7 will maklid arrovheads. GNUWpic defaults to solid arneheads and aarr owhead
value of 1; a value of 0 will produce open arrowheads.

6.5. LineThickness

It's dso possible to change the line thickness of an object (this is a GNU extenaiBrpiDdoesn't
support it.). The default thickness of the lines used ta dkgects is controlled by thiénethick variable.
This gies the thickness of lines in point# negdive value means use the default thicknessexioutput
mode, this means use a thickness of 8 millinchesx mutput mode with thec option, this means use the
line thickness specified hps lines; in trof output mode, this means use a thickness proportional to the
pointsize. Azero value means dwathe thinnest possible line supported by the outpuicde Initially it
has a value of -1. There is alsthicknessattribute (which can be abbreviatedthick). For example,cir-
cle thickness 1.5vould drav a drcle using a line with a thickness of 1.5 points. The thickness of lines is
not affected by the value of tisealevariable, nor by apwidth or height gien in the .PSline.

6.6. Invisible Objects

The modifierinvis makes an object entirelywisible. Thisused to be useful for positioning text in an
invisible object that is properly joined to neighboring onldswer DWB versions and GNUpic treat stan-
dalone text in exactly this way.



6.7. FilledObjects

It is possible to fill boxes, circles, and ellipses. The modififgd] accomplishes thisYou can suf-
fix it with a fill value; the default is gen by the stule variablélival .

DWB pic and gpic have qposite comentions for fill values and different dafilts. DVB fillval
defaults to 0.3 and smaller values are darker; GiNtdl uses 0O for white and 1 for black.

® 0 O

Figure 6-5:circle fill; move; circle fill 0.4; move; circle fill 0.9;

GNU gpic makes some additional guarantedsfill value greater than 1 can also be used: this means
fill with the shade of gray that is currently being used far &md lines. Normally this will be blackub
output devices may provide a mechanism for changing this. The invisibleitdbes not affect the fill-
ing of objects.Any text associated with a filled object will be added after the object has been filled, so that
the text will not be obscured by the filling.

The closed-object modifiegolid is equvalent tofill with the darkest fill value (B pic had this
capability but mentioned it only in a reference opinion).

7. More About Text Placement

By default, text is centered at the geometric center of the object it is associated atmodifier
ljust causes the left end to be at the specified point (which means that the text lies to the right of the speci-
fied place!), The modifiefjust puts the right end at the plac&he modifiersabove andbelow center the
text one half line space in thevgn direction.

Text attributes can be combined:

ljust text rjust tex ljust aboe
rjust below

Figure 7-1: '&xt attributes

What actually happens is that ixttetrings are centered in a box thatestwid wide bytextht high.
Both these variables are initially zero (thatpis’s way of not making assumptions abdtd]roff (1)'s
default point size).

In GNU gpic, objects can hae an aligned attribute. Thiswill only work when the postprocessor is
grops. Any text associated with an object having thkgned attribute will be rotated about the center of
the object so that it is aligned in the direction from the start point to the end point of the blojecthat
this attribute will hae ro efect for objects whose start and end points are coincident.

8. More About Direction Changes

We've already seen loto change the direction in which objects are composed from rightwards to
downwards. Hereare some more illustrag examples:



-10-

right; box; arr ow; circle; arr ow; ellipse

left; box; arr ow; circle; arr ow; ellipse

Figure 8-1: Effects of different motion directions (right and left)

down; box; arrow; circle; arr ow; ellipse; up; box; arrow; circle; arr ow; ellipse;

Figure 8-2: Effects of different motion directions (up and down)

Something that may appear surprising happens if you change directions in the obvious way:

Figure 8-3:box; arrow; circle; down; arr ow; ellipse

You might have eypected that program to yield this:



-11-

Figure 8-4: More intuitie?

But, in fact, to get Figure 8.3 youvea do his:

.PS

box;

arrow;

circle;

move to last circle .s;
down;

arrow;

ellipse

.PE

Why is this? Becausthe exit point for the current direction is already set when yow tihra object. The
second arm in Figure 8.2 dropped dmwards from the circle’ atachment point for an object to be joined
to the right.

The meaning of the commamnabve to last circle .sshould be obious. Inorder to see hwit gener-
alizes, we’ll need to go into detail onawmportant topics; locations and object names.

9. NamingObijects

The most natural way to name locationpia is relatve © objects. Inorder to do this, you ka ©
be able you ha i be &le to name objectsThe pic language has rich facilities for this that try to emulate
the syntax of English.

9.1. NamingObjects By Order Of Drawing

The simplest (and generally the most usefidywo name an object is withlast clause. lineeds to
be followed by an object type nammx, circle, ellipse, line, arr ow, spline or [] (the last type refers to a
composite objeawhich we'll discuss later). So, for example, thet circle clause in the program attached
to Figure 9.1.3 refers to the last circle drawn.

More generallyobjects of a gien type are implicitly numbered (starting from 1you can refer to
(say) the third ellipse in the current picture watld ellipse, or to the first box adst box or to the fifth line
as5th line.

Objects are also numbered baekds by type from the last one of You can 2ag last boxto get
the second-to-last box, 8rd last ellipseto get the third-to-last box.

In places wherath is allowed, expr'th is also allowed. Note thath is a single token: no space is
allowed between theand theth. For example,

fori=1to 4 do{
line from ‘i'th box.nw to ‘i+1'th box.se

}



-12-

9.2. NamingObijects With Labels

You can also specify an object by referring to a labkllabel is a word (which must begin with a
capital letter) followed by a colon; you declare it by placing it immediately before the object drawing com-
mand. er example, the program

.PS

A: box "first" "object”
move;

B: ellipse "second
move;

arrow left at A;
.PE

object”

declares label8 andB for its first and second objects. Herghat that looks like:

first second
object object

Figure 9-1: Example of label use

The at statement in the fourth line uses the lahglthe behavior oft will be explained in the next sec-
tion). We'll see later on that labels are most useful for referring to block composite objects.

Labels are not constants budriables (you can we colon as a sort of assignmentfyou can say
something lile A: A + (1,0); and the effect will be to reassign the laBefo designate a position one inch
to the right of its old value.

10. Describinglocations

The location of points can be described in yndifferent ways. Allthese forms are interchangeable
as for as theic language syntax is concerned; where you can use onef #me others that would mak
semantic sense are allowed.

The special labeHere always refers to the current position.

10.1. AbsoluteCoordinates

The simplest is absolute coordinates in inclpés;uses a Cartesian system with (0, 0) at theeto
left corner of the virtual drawing sade for each picture (that is, X increases to the right and Y increases
upwards). Anabsolute location may\alys be written in the caentional form as tw comma-separated
numbers surrounded by parentheses (and this is recommended for clargghtexts where it creates no
ambiguity the pair of X and Y coordinates suffices without punctuation.

Itis a good idea tovaid absolute coordinates, Wwever. They tend to mak pcture descriptions dif
cult to understand and modifynstead, there are quite a number of ways to specify locationseetgpic
objects and previous locations.

10.2. LocationsRelative to Objects

The symbolhere always refers to the position of the last object drawn or the destination of the last
move.

Alone and unqualified, st circle or ary other way of specifying a closed-object or arc location
refers as a position to the geometric center of the objdéatjualified, the name of a line or spline object
refers to the position of the object start.

Also, pic objects hge quite a fev named locations associated with them. One of these is the object
center which can be indicated (redundantly) with thefigucenter (or just.c). Thus,last circle .centeris
equialent tolast circle.



-13-

10.2.1. LocationsRelative to Closed Objects
Every closed object (box, circle, ellipse, or block composite) also has eight compass points associ-
ated with it;

.nw .n .ne
Wo e.C 0. W
.SW S .se

Figure 10-1: Compass points

these are the locations where eight compass rays from the geometric center would intersect ttfgnfigure.
when we sayast circle .swe are referring to the south compass point of the last circlendr@aheexpla-
nation of Figure 7.3 program is nav complete.

(In case you disli& mompass points, the naméap, .bottom, .left and.right are synonyms fom, .s,
.6, and .w respectiely; they can e/en be dbreviated tat, .b, .| and.r).

The namesenter, top, bottom, left andright can also be used (without the leading dot) in a prefix
form marked byof; thus, center of last circle and top of 2nd last ellipse a both valid object refer-
ences.

Arc objects also hee mmpass point; theare the compass points of the implied circle.

10.2.2. LocationRelative to Open Objects

Every open object (line, amg arc, or spline) has three named poinssart, .center, and .end They
can also be used without leading dots indghprefix form. The center of an arc is the center of its circle,
but the center of a line, path, or spline is halfway between its endpoints.

.end .start .start .end

.center

.center

.center
.end .start

.start .center .end

Figure 10-2: Special points on open objects

10.3. Ways of Composing Positions
Once you hee wo positions to work with, there are&@eal ways to combine them to specifywe
positions.

10.3.1. \éctor Sums and Displacements

Any two positions may be added or subtracted to yieldvapasition. Theresult is the corentional
vector sum or difference of coordinateBor example,last box .ne + (0.1, 0)s a valid position. This
example illustrates a common use, to define a position slightly offset from a named off@r (s@ytioning

purposes).

10.3.2. Intempolation Between Positions

A position may be interpolated betweenyawo positions. Thesyntax is fraction of the way
betweenpositionland position2' For example, you can sal/3 of the way between her and last ellipse
.ne. The fraction may be in numerator/denominator form or may be an ordinary number (valnes are



-14-

restricted to [0,1]). As an alternedi © this verbose syntax, you can sdgaction <positionl, posi-
tion2>."; thus, the example could also be writi#8 <here, last ellipse>

Figure 10-3P: 1/3 of the way between last abw start and last arrow .end

This facility can be used, for example, to double connections.

yin yang

Figure 10-4: Doubled arrows

You can get Figure 10-4 from the following program:
.PS
A: box "yin"; move;
B: box "yang";
arrow right at 1/4 <A.e,A.ne>;

arrow left at 1/4 <B.w,B.sw>;
.PE

Note the use of the short form for interpolating points.

10.3.3. Ppjections of Points

Given two positionsp andg, the position(p, q) has the X coordinate gfand the Y coordinate af.
This can be helpful in placing an object at one of the corners of the virtual box defined bthéw
objects.

A (B,A) is here

(A,B) is here ’ B

Figure 10-5: UsingX, y) composition

10.4. UsingLocations

There are four ways to use locatioas; from, to, and with. All three are object modifiers; that is,
you use them as suffixes to a drawing command.

The at modifier says to dia a dosed object or arc with its center at the following location, or to
draw a line/spline/arra starting at the following location.

The to modifier can be used alone to specify avendestination. Theérom modifier can be used
alone in the same way at



-15-

Thefrom andto modifiers can be used withiae or arc command to specify start and end points of
the object. In conjunction with named locations, this offers a verblée mechanism for connecting
objects. Br example, the following program

PS
box "from"
move 0.75;
ellipse "to"
arc cw from 1/3 of the way \
between last box .n and last box .ne to last ellipse .n;
.PE

yields:

from

Figure 10-6: A tricl connection specified with English-ékg/ntax

The with modifier allows you to identify a named attachment point of an object with another point.
This is very useful for connecting objects in a natural. W@y an example, consider thesetgrograms:

box wid 0.5 ht 0.5; box wid 0.75 ht 0.75 box wid 0.5 ht 0.5; box wid 0.75 ht 0.75 with .sw at last box .se;

Figure 10-7: Using theith modifier for attachments

10.5. Thechop modifier

When drawing lines between circles that dantersect them at a compass point, it is useful to be
able to shorten a line by the radius of the circle at either or both ends. Consider the following program:

.PS

circle "x"

circle "y" at 1st circle - (0.4, 0.6)

circle "z" at 1st circle + (0.4, -0.6)
arrav from 1st circle to 2nd circle chop
arrov from 2nd circle to 3rd circle chop
arran from 3rd circle to 1st circle chop

.PE

It yields the following:



-16-

Figure 10-8: Thehop modifier

Notice that thechop attribute maves arowheads rather than stepping on them. By defaultcliogp modi-
fier shortens both ends of the line disclerad. By suffixing it with a number you can change the amount
of chopping.

If you sayline ... choprl chop r2 with r1 andr2 both numbers, you carary the amount of chop-
ping at both endsYou can use this in combination with trigonometric functions to write code that will deal
with more comple intersections.

11. ObjectGroups
There are tw different ways to group objects pic; brace groupingandblodk composites

11.1. BraceGrouping

The simpler method is simply to group a set of objects within curly btawkbrace character©n
exit from this grouping, the current position and direction are restored to #iei when the opening
brace was encountered.

11.2. BlockComposites

A block composite object is created a series of commands enclosed by squaets brelsecompos-
ite can be treated for most purposes Bksngle closed object, with the size and shape of its bounding box.
Here is anxample. Theprogram fragment

A [
circle;
line up 1 at last circle .n;
line down 1 at last circle .s;
line right 1 at last circle .e;
line left 1 at last circle .w;
box dashed with .nw at last circle .se + (0.2, -0.2);
Caption: center of last box;

]

yields the block in figure 11-1, which we shboth with and without its attachment points. The bleck’
location becomes the value &f



-17-

.nw .n .ne

)

Figure 11-1: A sample composite object

To refer to one of the composisedtachment points, you can say (fotaenple) A .s. For purposes of
object naming, composites are a clag¥su could writelast [] .sas an equilent refrence, usable ywhere
a location is needed. This construction is very important for putting together large, multi-part diagrams.

Blocks are also aariable-scoping mechanism, dilagroff(1) ervironment. Allvariable assignments
done inside a block are undone at the end ofatget at values within a block, write a name of the block
followed by a dot, followed by the variable or label yoantv For example, we could refer the the center of
the box in the ab@ composite atast [] .Caption or A.Caption.

This kind of reference to a label can be used invealy ary other location can beFor example, if
we addedHi!" at A.Caption the result would look li& this:

)
NI

Figure 11-2: Adding a caption using interior labeling

You can also use interior labels in either part efith modifier This means that the example com-
posite could be placed relatio its caption box by a command containimigh A.Caption at.

Blocks may be nested. This means you can use block attachment pointksl topbcomple dia-
grams hierarchicallyffrom the inside outNote thatlast and the other sequential naming mechanismstdon’
look inside blocks, so if you kia a pogram that looks like



.PS

-18-

P: [box "foo"; ellipse "bar'];

Q:[

[box "baz"; ellipse "quxx"]
"random text";

arrow from 2nd last [];

.PE

the arrav in the last line will be attached to objdttnot objectQ.

In DWB pic, only references onevel deep into enclosed blocks were permitted. Gijlit removes

this restriction.

The combination of block variable scoping, assignability of labels and the naadlity fthat well
describe later on can be used to simulate functions with lacalbles (just wrap the macro body in block

braces).

12. StyleVariables

There are a number of global styleriables inpic that can be used to change it&rall behaior.
We've mentioned seeral of them in previous sectiong.hey're all described herel-or each variable, the

default is gven.

Style Variable | Default | What It Does

boxht 0.5 Default height of a box

boxwid 0.75 | Default height of a box

lineht 0.5 Default length of vertical line
linewid 0.75 Default length of horizontal line
arcrad 0.25 | Default radius of an arc
circlerad 0.25 | Default radius of a circle
ellipseht 0.5 Default height of an ellipse
ellipsevid 0.75 | Default width of an ellipse
moveht 0.5 Default length of vertical me
movewid 0.75 | Default length of horizontal nve
textht 0 Default height of box enclosing a text object
textwid 0 Default width of box enclosing a text object
arrovht 0.1 Length of arrowhead along shaft
arrovwid 0.05 | Width of rear of arrowhead
arrovhead 1 Enable/disable arrowhead filling
dashwid 0.05 | Interval for dashed lines
maxpswid 11 Maximum width of picture
maxpsht 8.5 Maximum height of picture
scale 1 Unit scale factor

fillval 0.5 Default fill value

Any of these variables can be set with a simple assignment stateroeekample:



-19-

Figure 12-1boxht=1; boxwid=0.3; movewid=0.2; box; move; box; move; box; move; box;

In GNU pic, setting thescalevariable re-scales all size-related state variables so that tleiesv
remain equialent in the nes units.

The commandesetresets all style variables to their delfts. You can gie it a @mma-separated list
of variable names as arguments, in which case it resets only those.

State variables retain their values across pictures until reset.

13. Expressions, Variables, and Assignment

A number is a valid expression, of course (all numbers are stored internally as floating{peait).
mal-point notation is acceptable; in GNjgic, scientific notation in & ‘e’ format (like 5e-2 ) is accepted.

Anywhere a number isxpected, the language will also acceptidable. \ariables may be theubt-
in style variable described in the last section, or variables created by assignment.

DWB pic supports only the ordinary assignment via =, defines the variable in the current block if it is
not already defined there, and then changes the value in the current®dkgpic supports an alternate
form of assignment using :=. Thvariable (right side) must already be defined, and the valueagéble
will be changed only in the innermost block in which it is defined.

You can use the height, width, radius, and x and y coordinatesyafbéect or corner inxgressions
If A is an object label or name, all the following are valid:

A.X # x coordinate of the center of A

A.ney # y coordinate of the northeast corner of A
A.wid #  the width of A

A.ht # and its height

2nd last circle.rad # t he radius of the 2nd last circle

Note the second expression, showing ho extract a corner coordinate.

Basic arithmetic resembling those of C operators eaiéable; +, *, -, /, and %.So is ~ for &ponen-
tiation. Groupingis permitted in the usualay using parenthese§&NU gpic allows logical operators to
appear in expressions; ! (logicalgagon, not factorial), &&, ||, ==, !=, >=, <=, <, >.

Various built-in functions are supportesin(x), cos), log(x), exp(x), sqrt(x), max(x,y), atan2(x,y),
min(x,y), int(x), and rand(), Both exp and log ae base 10; int does integer truncation; and rand()
returns a random number in [0-1).

GNU gpic also documents a onegament form or randand(x), which returns a random number
between 1 andk, but this is deprecated and may be remeaed in a futur e version.

The functionsprintf() behaes like a Csprintf(3) that only takes %, %e, %f, and %g format strings.

14. Macros

You can define macros ipic. This is useful for diagrams with repetgi parts. Inconjunction with
the scope rules for block composites, it effetyi gives you the ability to write functions.

The syntax is

define name { replacement text



-20-

This definenameas a macro to be replaced by the replacement text (not including the braces). The macro
may be called as

namegargl, arg2, ... argh

The arguments (if any) will be substituted for tokens $1, $2 ... $n appearing in the replacement text.
As an example of macro use, consider the following:

.PS
# Plot a single jumper in a $1 by $2 box, $3 is the on-off state
define jumper { [

shrinkfactor = 0.8;

Outer: box invis wid 0.5 ht 1;

# Count on end ] to reset these
boxwid = Outer.wid * shrinkfactor / 2;
boxht = Outer.ht * shrinkfactor / 2;

box fill (!$1) with .s at center of Outer;
box fill ($1) with .n at center of Outer;

1}

# Plot a block of six jumpers

define jumperblock {
jumper($1);
jumper($2);
jumper($3);
jumper($4);
jumper($5);
jumper($6);

jwidth = last [].Outer.wid;
jheight = last [].Outer.ht;

box with .nw at 6th last [].nw wid 6*jwidth ht jheight;

# Use {} to avoid changing position from last box draw.
# This is necessary so move in any direction will work as expected
{"Jumpers in state $1$2$2$3$4$5%$6" at last box .s + (0, -0.2);}

}

# Sample macro invocations
jumperblock(1,1,0,0,1,0);
move;
jumperblock(1,0,1,0,1,1);

It yields the following:



-21-

bl BT

Jumpers in state 1110010 Jumpers in state 1001011

Figure 14-1: Sample use of a macro

This macro example illustratesvagyou can combine [], brace grouping, aratiable assignment to write
true functions.

One detail the example aldes not illustrate is the fact that macro argument parsing is resi-tok
oriented. Ifyou calljumper( 1), the \alue of $1 will be' 1 " . You could @en call jumper(big string) to
give &l the value'big string" .

If you want to pass in a coordinate pgwu can &oid getting tripped up by the comma by wrapping
the pair in parentheses.

Macros persist through picture$o undefine a mcro, sayndef name for example,

undef jumper
undef jumperblock

would undefine the tavymacros in the jumper block example.

15. Import/Export Commands
Commands that import or export data betwgierand its environment are described here.

15.1. Fileand Table Insertion
The statement

copy filename

inserts the contents éifenamein the pic input stream.Any .PS/.PE pair in the file will be ignored-his,
you can use this to include pre-generated images.

A variant of this statement replicates tmpy thru feature ofgrap(1). If you say

copy filenamethru macro

calls themacro (which may be either a name or replacement text) on therants obtained by breaking
each line of the file into blank-separated fields. The macro mayupao 9 aguments. Theeplacement
text may be delimited by braces or by a pair of instances ytlaaracter not appearing in the rest of the
text.

If you write

copy thru  macro

omitting the filename, lines to be parsed are taken from the input source up to the next .PE.

In either of thecopy commands, GNUgpic permits a trailing until word clause to be added which
terminates the cgpwhen the first wrd matches the argument (the default behavior is thereforeaksmti
to until .PE,

Accordingly, the command

.PS
copy thru % circle at ($1,$2) % until "END"



-22-

is equiaent to
.PS
circle at (1,2)
circle at (3,4)
circle at (5,6)
box
.PE

15.2. Delug Messages

The commandgrint accepts annumber of comma-separated arguments, concatenates their output
forms, and writes the result to standard erfesch argument must be an expression, a position, ott a te
string.

15.3. Escapéeo Post-Processor
If you write

commandarg. ..

pic concatenates the @amiments and pass them through as a line té drofpX. Eacharg must be an
expression, a position, orte Thishas a similar effect to a line beginning witlor \, but allows the alues
of variables to be passed through.

15.4. ExecutingShell Commands
The command

sh{ anything...}

macrogpands the text in braces, thexeautes it as a shell command. This could be used to generate
images or data tables for later inclusiorhe delimiters shown as {} here may also b® wepies of ag

one character not present in the shell commaxid t@ either case, the body may contain balanced {}
pairs. Stringsn the body may contain balanced or unbalanced bracey rase.

16. Control-flow constructs
The pic language provides conditionals and loopif@r example,

pi = atan2(0, -1);
fori=0to 2 * pi by 0.1 do {
"-"at (i/2, 0);
""at (i/12, sin(i)/2);
""" at (i/2, cos(i)/2);
}

which yields this:



-23-

Figure 16-1: Plotting with &r loop

The syntax of théor statement is:
for variable= exprlto expr2 [by [*]expr3] do X body X

The semantics are as folle: Setvariableto exprl . While the value ofvariableis less than or equal to
expr2, do bodyand incremenvariable by expr3; if by is not given, incrementvariable by 1. If expr3is
prefixed by* thenvariable will instead be multiplied byxpr3. X can be ay character not occurring in
body; or the two Xs may be paired braces (as in stecommand).

The syntax of thd statement is as follows:
if expr then X if-true X[elseY if-false Y

Its semantics are as follows: &8uateexpr; if it i s ron-zero then dd-true, otherwise daf-false X can be
ary character not occurring ifrtrue. Y can be ay character not occurring ifirfalse

Eithe or both of the X or Y pairs may instead be balanced pairs of braces ({ and }) ashicone
mand. Ineither case, thé-true may contain balanced pairs of brac@&one of these delimiters will be
seen inside strings.

All the usual relational operators my be used in conditiox@aiessions; ! (logical rggtion, not fc-
torial), &&, ||, ==, =, >=, <=, <, >,

String comparison is also supported using == and !=. String comparisons may need to be parenthe-
sized to ®oid syntactic ambiguities.

17. InterfaceTo [gt]roff

The output opic is [gt]roff draving commands. The GNUgpic(1) command warns that it relies on
drawing extensions presentdroff(1) that are not present froff(1).

17.1. ScalingArguments

The DWB pic(1) program will accept one or tnarguments to.PS which is interpreted as a width
and height in inches to which the resultpm{1) should be scaled (width and height scale independently).
If there is only one gument, it is interpreted as a width to scale the picture to, and height will be scaled by
the same proportion.

GNU gpic is less general; it will accept a single width to scale to, or a zero width and a maximum
height to scale toWith two nonzero arguments, it will scale to the maximum height.

17.2. How Scaling is Handled

Whenpic processes a picture description on input, it passes .PS and .PE through to the postprocessor
The .PS gets decorated withawumeric arguments which are the X and Y dimensions of the picture in
inches. Thepost-processor can use these to resgrace for the picture and center it.

Themgsmacros, for example, include the following definitions:



-24-

.de PS
br
.Sp \n[DD]u
de \n[.$]<2 .@error bad arguments to PS (not preprocessed with pic?)
el. ds@need (u;\$1)+1v
i n +U\n[.-\n[.i]-\$2/2>?0)

.de PE
.par@reset
.Sp \n[DD]Ju+.5m

Equivaent definition will be supplied by GNiic(1) if you use the -mpic option; this should reak
usable with macro pages other timag1).

if .PF is used instead of .PE, tleff position is restored to what it was at the picture start
(Kernighan notes that the F stands for "flyback").

The invocation
.PS dile

causes the contentsfidé to replace the .PS line. This feature is deprecated;apsefileinstead).

By default, input lines that lgén with a period are passed to the postprocesstredded at the cor
responding point in the outpuMessing with horizontal or vertical spacing is an obvious recipeugs,b
but point size and font changes will usually be safe.

Point sizes and font changes are also safe witkinstangs, as long as there undone before the
end of string.

The state ofgt]roff 's fill mode is preserved across pictures.

The Kernighan paper notes that there is a subtle problem with complicated equationpimpide
tures; thg come out wrong ifeqn(1) hasto leave exra vertical space for the equation. If your equation
involves more than subscripts and superscripts, you must add togiheibg of each equation thetea
informationspace 0 . He gves the following example:

arrow
box "$space 0 {H( omega )} over {1 - H( omega )}$"
arrow

H(w)
1-H(w)

Figure 17-1: Equations within pictures

18. Interfaceto TeX

TeX mode is enabled by thet option. InTpX mode, pic will define a vbox callédraph for each
picture. You must yourself print that vbox using, for example, the command

\centerline{\box\graph}

Actually, since the vbox has a height of zero this will produce slightly mergécal space alwe the picture
than belwv it;

\centerline{\raise 1em\box\graph}



-25-

would avoid this.
You must use apgX driver that supports thpic specials, version 2.

Lines beginning with are passed through transparentlgpds added to the end of the line teoal
unwanted spacesYou can safely use this feature to change fonts or to changealinre ef\baselineskip
Anything else may well produce undesirable results; use at your own risk. Lines beginning with a period
are not giren any Pecial treatment.

The x mode ofpic(1) will nottranslateroff font and size changes included in text strings!

19. ObsoletecCommands
GNU gpic(1) hasa omommand

plot expr ["text']

This is a text object which is constructed by udieg as a format string for sprintf with an argument of
expr. If textis omitted a format string of "%g" is useditributes can be specified in the same way as for a
normal text object. Beary careful that you specify an appropriate format stiogdoes only very lim-
ited checking of the string. This is deprecatedawalir of sprintf.

20. Somd_arger Examples
Here are a f& larger examples, with complete source code.
One of our earlier examples is generated in an insteuefly using a for loop:

.PS
# Draw a demonstration up left arrow with grid box overlay
define gridarrow

{
[
{arrow up left $1;}
box wid 0.5 ht 0.5 dotted with .nw at last arrow .end;
fori=2to($1/0.5) do
{
box wid 0.5 ht 0.5 dotted with .sw at last box .se;
}
move down from last arrow .center;
[
if ($1 == boxht ) then { "\fBline up left\fP" } else { sprintf("\fBarrow up left %g\fP", $1) };
]
]
move right from last [] .e;
}
gridarrow(0.5);
gridarrow(1);
gridarrow(1.5);
gridarrow(2);

undef gridarrow
.PE



-26-

line up left arrow up left 1 arrow up left 1.5 arrow up left 2

Figure 20-1: Diagonal arrows (dotted boxesvsltize implied 0.5-inch grid)

Here’s an aample concocted to demonstrate layout of a large, multiple-part pattern:



-27-

.PS
define filter {box ht 0.25 rad 0.125}
lineht = 0.25;
Top: [
right;
box "\fBms\fR" "sources";
move;
box "\fBHTML\fR" "sources";
move;
box "\fBlinuxdoc-sgmI\fP" "sources" wid 1.5;
move;
box "\fBTexinfo\fP" "sources";

line down from 1st box .s lineht;

A: line down;

line down from 2nd box .s; filter "\fBhtmI2ms";
B: line down;

line down from 3rd box .s; filter "\fBformat\fP";
C: line down;

line down from 4th box .s; filter "\fBtexi2roff\fP";
D: line down;

]

move down 1 from last [] .s;
Anchor: box wid 1 ht 0.75 "\fBms\fR" "intermediate” "form";
arrow from Top.A.end to Anchor.nw;
arrow from Top.B.end to 1/3 of the way between Anchor.nw and Anchor.ne;
arrow from Top.C.end to 2/3 of the way between Anchor.nw and Anchor.ne;
arrow from Top.D.end to Anchor.ne
{
# PostScript column
move to Anchor .sw;
line down left then down ->;
filter "\fBpic\fP";
arrow;
filter "\fBegn\fP";
arrow;
filter "\fBtbI\fP";
arrow;
filter "\fBgroff\fP";
arrow;
box "PostScript";

# HTML column

move to Anchor .se;

line down right then down ->;
A: filter dotted "\fBpic2img\fP";
arrow;

B: filter dotted "\fBegn2htmI\fP";
arrow;

C: filter dotted "\fBtbl2htmI\fP";
arrow;

filter "\fBms2htmI\fP";

arrow;

box "HTML";



.PE

aNi’aNi’

ms
sources

-28-

# Nonexistence caption

box dashed wid 1 at B + (2, 0) "These tools" "don’t yet exist";
line chop 0 chop 0.1 dashed from last box .nw to A.e ->;

line chop 0 chop 0.1 dashed from last box .w to B.e ->;
line chop 0 chop 0.1 dashed from last box .swto C.e ->;

HTML linuxdoc-sgml
sources sources

Texinfo
sources

AN

ms

intermediate

form

Y
pic pic2img -  _

( egn ) egn2html = < - - - -
( o ) thl2html =~
( groff ) ms2htmi
PostScript HTML

Figure 20-2: Hypothetical productionfidor dual-mode publishing

21. PICReference
This is an annotated grammar of PIC.

These tools |
don't yet exist |



-29-

21.1. Lexicalltems

In generalpic is a free-format, token-oriented language that ignores whitespace outside $rihgs.
certain lines and contructs are specially interpreted at the lexiehl le

A comment bgins with # and continues to \n (comments may alsoviotlt in a line). Aline
beginning with a period or backslash may be interpreted as text to be passed through to the post-processor
depending on command-line options. An end-of-line backslash is interpreted as a request to continue the
line; the backslash and following newline are ignored.

Here are the grammar terminals:

<number>
A decimal numeric constant. May contain a decimal point or be expressed in scientific notation in
the style ofprintf(3)’'s %e scape. (All variables are represented internally in floating-point.)

<string>
Any ASCII characters surrounded by a pair of double quotes. May contain a double quote if pre-
ceded by a backslash.

<variable>
A lower-case alphabetic characgtéollowed by ay number of alphanumericgValues of ariables
are preserved across pictures.)

<label>
An upper-case alphabetic charactellowed by ay number of alphanumerics.

21.2. Semi-lBrmal Grammar

Tokens not enclosed in <> are literals, except:

\nis a newline

threedots is a suffix meaning ‘replace with 0 or more repetitions of the preceding element.
enclosurén square brackets has its usual meaning of ‘this clause is optional'.

P w DR

Square-bragk-enclosed portions within tokens are optiorithus, h[eigh]t matches either ‘height’
or ‘ht'.
If one of these special tokens has to be referred to liteitalysurrounded with single quotes.
The top-levdl pic object is a picture.
<picture> n= .PS [width [height]]\n
<statement> ...
.PE\n

Thewidth andheightarguments, if present, caupi to attempt to scale the picture to theegidimensions
in inches. In no case, haver, will the X and Y dimensions of the picture exceed the values of the style
variablesmaxpswid, maxpsheight(which default to the normal 8.5 by 11 page size)

If the ending .PS is replaced by ,Rfe page vertical position is restored to igdue at the time .PSas
encountered. Anothalternate form of imocation is.PS < filename which replaces the .PS line with a
file to be interpreted byic (but this feature is deprecated).

The .PS, .PE, and .PF macros to perform centering and scaling are normally supplied by the post-processor



-30-

<statement> := <command> ;
<command>\n

<command> = <primitive> <modifier>...
<label> : <command>
<label> : <position>
<variable> = <expr>
<direction>
{ <command> ... }
T <command> ... T
for <var> = <expr> to <expr> [by <expr>] do { <command> ... }
if <expr> then { <command> ... } [else { <command> ... }]
copy <filename> [until <word>]
copy <filename> thru <macroname> [until <word>]
sh <balanced-text>
print <print-item>
reset [ <variable> ... ]

The current position and direction areeshon entry to a { } and restored on exit from it.

Drawn objects within [ ] are treated as a single composite object with a rectangular shape (that of the
bounding box of all the elementsyariable and label assignments within a block are local to the block.
Current direction of motion is restored to thedlue at start of block uporxie Positionis not restored

(unlike { }) i nstead, the current position becomes the exit position for the current direction on the block’
bounding box.



<primitive> :=

<attribute> ::=

-31-

box

circle

ellipse

arc

line

arrow

spline

move

<text> <text> ...

h[eigh]t <expr>
wid[th] <expr>
rad[ius] <expr>
diam[eter] <expr>
up [ <expr>]
down [ <expr> ]
left [ <expr> ]
right [ <expr> ]
from <position>
to <position>

at <position>
with <corner>

by <expr> <expr>
then

dotted [ <expr> ]
dashed [ <expr>]
chop [ <expr>]
->

<-

<->

invis

solid

fill <expr>

same

<text> <text> ...
<expr>

# Closed object -- rectangle

# Closed object -- circle

# Closed object -- ellipse

# Open object -- quarter-circle

# Open object -- line

# Open object -- line with arrowhead
# Open object -- spline curve

# Text within invisible box

# Set height of closed figure

# Set width of closed figure

# Set radius of circle/arc

# Set diameter of circle/arc

# Move p

# Move cwn

# Move kft

# Move iight

# Set from position of open figure
# Set to position of open figure
# Set center of open figure

# Fx corner at specified location
# Set objects atachment point

# Sequential segment composition
# Set dotted line style

# Set dashed line style

# Chop end(s) of segment

# Decorate with "to" arrow

# Decorate with "from" arrow

# Decorate with both arrows

# Make primitive invisible

# Make dosed figure solid

# Set fill density for figure

# Copy size of previous object

# Text within object

# Motion in the current direction

Missing attributes are supplied from dalts; inappropriate ones are silently ignoréar lines, splines,
and arcs, height and width refer to arrowhead size.

Theat primitive ®ts the center of the current obje@he with attribute fixes the specified feature
of the given object to a specified location.

Thesolid primitive is not yet supported in GNgpic.

Theby primitive is mot documented in the tutorial portion of the Kernighan paaer should proba-
bly be considered unreliable.

The primitive arr ow is a synonym foline ->.

<text> = <string> [ <placement> ... ]
sprintf(“format”, <expr> ...) [ <placement> ... |
<placement>::= center | ljust | rjust | above | below

Text is normally an attrilite of some object, in which case suceesdrings are vertically stacked and cen-
tered on the objed’eenter by dedult. Standalongext is treated as though placed in an invisible box.



-32-

A text item consists of a string or sprintf-expression, optionally followed by positioning information.
Text or format strings may contain {gtn}rbfont changes, size changes, and local motions, provided those
changes are undone before the end of the current item.

A position is an (x, y) coordinate paifhere are lots of different ways to specify positions:

<position> = <expr> , < expr>
<place> {+-} <expr>, <expr>
<place> {+-} ( <expr>, <expr>)
( < position>, <paosition>)
<expr> [of the way] between <position> and <position>
<expr> <’ <position> , <position> ">’
( < position>)

<place> := <label> [ <dot-corner> ]
<corner> of <label>
[0]1]2]3]4|5]6]7|8|91th [last] <primitive> <dot-corner>
<expr>'th [last]<primitive> <dot-corner>
<corner> of [0]1]2|3|4]5|6]7|8|9]th [last] <primitive>
<corner> of <expr>th [last] <primitive>
Here

<dot-corner>:=.n|.e|.w|.s|.ne|.nw|.se|.sw]|.c| .start|.end

<corner> ::= top | bot | left | right | start | end

As Kernighan notes, "since barbarismselikth and 3th are barbaric, synonyms &klst and 3rd are
accepted as well". Objects of asgn type are numbered from 1 upwds in order of declaration; thest
modifier counts backwards.

The ™th" form (which allows you to select a previous object with goression, as opposed to a
numeric literal) is bnot documented in DV (1).

The following style variables control output:

Style Variable | Default | What It Does

boxht 0.5 Default height of a box

boxwid 0.75 | Default height of a box

lineht 0.5 Default length of vertical line
linewid 0.75 Default length of horizontal line
arcrad 0.25 | Default radius of an arc
circlerad 0.25 | Default radius of a circle
ellipseht 0.5 Default height of an ellipse
ellipsevid 0.75 | Default width of an ellipse
moveht 0.5 Default length of vertical me
movewid 0.75 | Default length of horizontal nve
textht 0 Default height of box enclosing a text object
textwid 0 Default width of box enclosing a text object
arrovht 0.1 Length of arrowhead along shaft
arrovwid 0.05 | Width of rear of arrowhead
arrovhead 1 Enable/disable arrowhead filling
dashwid 0.05 | Interval for dashed lines
maxpswid 11 Maximum width of picture
maxpsht 8.5 Maximum height of picture
scale 1 Unit scale factor

fillval 0.5 Default fill value




-33-

Any of these can be set by assignment, or reset usirmgshtstatement. Styleariables assigned within []
blocks are restored to their beginning-of-block value on exit; tegh-#ssignments persist across pictures.
Dimensions are divided kgcaleon output.

All pic expressions areveluated in floating point; units default to inches. Expressions ke fol-
lowing simple grammamith semantics very similar to C expressions:

<expr>:= <expr> <op> <expr>
I < expr>
( <expr>)
- < expr>
<variable>
<number>
<place> .x
<place>.y
<place> .ht
<place> .wid
<place> .rad
sin(<expr>)
cos(<expr>)
log(<expr>)
exp(<expr>)
sqrt(<expr>)
max(<expr>, <expr>...)
atan2(<expr>, <expr>)
min(<expr>, <expr>...)

int(<expr>)
rand()
<op> = -1 % ]

I=|==| < | > >= | <=
I &&
Both expandlog are base 10nt does integer truncation; anand() returns a random number in [0-1).
There aredefine and undef statements which are not part of the grammary(ttehave & pre-
processor macros to the language). These may be used to define pseudo-functions.

define name { replacement text

This definemmameas a macro to be replaced by the replacement text (not including the bigteeshacro
may be called as

namegargl, arg2, ... argh

The arguments (if any) will be substituted foreak $1, $2 ... $n appearing in the replacement text. T
undefine a mcro, sayndef name specifying the name to be undefined.

22. History and Acknowledgements

Original pic was written to go with Joseph Ossamnatiginal troff(1) by Brian Kernighan, and later
re-written by Kernighan with substantial enhancements (apparently as part wbltit@e of troff(1) into
ditroff(1) to generate device-independent output).

The language had been inspired by some earlier graphics languages inaledihgnd grap.
Kernighan credits Chris van Wyk (the designeidefal) with mary of the ideas that went infac.

The pic language was originally described by Brian Kernighan in Bell Labs Computing Science
Technical Report #116 (you can obtain a PostScripy abphe revised &rsion, [1], by sending a mail mes-
sage tonetlib@reseach.att.comwith a body of ‘send 116 from research/cstr’.). Thergehkeen tvo



-34-

revisions, in 1984 and 1991.

The document you are readindeetively subsumes Krnighan$ description; it vas written to fill in
lacunae in the exposition and integrate in descriptions of the ggii(l) features.

The GNUgpic implementation was written and is maintained by James €Jp®jclark.com>.

23. Bibliography

1. Kernighan, B. WPIC -- A Graphics Language for Typesetting (Revised User ManuaBell Labs
Computing Science Technical Report #116, December 1991.

2. Van Wyk, C.JA high-level language for specifying pictues ACM Transactions On Gaphics1,2
(1982) 163-182.



