
Making Pictures With GNU PIC

Eric S. Raymond

<esr@snark.thyrsus.com>

ABSTRACT

Thepic language is atroff extension that makes it easy to create and alter box-and-
arrow diagrams of the kind frequently used in technical papers and textbooks. Thispaper
is both an introduction to and reference forgpic(1), the implementation distributed by the
Free Software Foundation for use withgroff(1).

1. Intr oduction to PIC

1.1. Why PIC?

Thepic language provides an easy way to write procedural box-and-arrow diagrams to be included in
troff documents. Thelanguage is sufficiently flexible to be quite useful for state charts, Petri-net diagrams,
flow charts, simple circuit schematics, jumper layouts, and other kinds of illustration involving repetitive
uses of simple geometric forms and splines. Because these descriptions are procedural and object-based,
they are both compact and easy to modify.

The gpic(1) implementation ofpic is distributed by the Free Software Foundation for use with their
groff(1) implementation oftroff . Because both implementations are widely available in source form for
free, they are good bets for writing very portable documentation.

1.2. PICVersions

The original 1984 pre-ditroff(1) version ofpic is long obsolete. The rewritten 1991 version is still
available as part of the Documenter’s Work Bench module of System V.

Where differences between Documenter’s Work Bench (1991)pic and GNU pic need to be
described, originalpic is referred to as "DWB pic". Details on the history of the program are given at the
end of this document.

In this document, thegpic(1) extensions will be marked as such.

2. Invoking PIC

Every pic description is a little program, which gets compiled bypic(1) into gtroff(1) macros.Pro-
grams that process or displaygtroff(1) output need not know or care that parts of the image began life aspic
descriptions.

The pic(1) program tries to translate anything between.PS and .PE markers, and passes through
ev erything else. The normal definitions of.PSand .PE in themsmacro package and elsewhere have also
the side-effect of centering thepic output on the page.

Other details of the[gt]roff (1) interface

2.1. PICError Messages

If you make apic syntax error, gpic(1) will issue an error message in the standardgcc(1)-like syntax.
A typical error message looks like this,

-2-

pic:pic.ms:<nnn>: parse error before ‘<token>’
pic:pic.ms:<nnn>: giving up on this picture

where <nnn> is a line number, and <token> is a token near (usually just after) the error location.

3. BasicPIC Concepts

Pictures are described procedurally, as collections of objects connected by motions.Normally, pic
tries to string together objects left-to-right in the sequence they are described, joining them at visually natu-
ral points. Here is an example illustrating the flow of data inpic processing:

document gpic(1)
gtbl(1) orgeqn(1)

(optional)
gtroff(1) PostScript

Figure 3-1: Flow of pic data

This was produced from the followingpic program:

.PS
ellipse "document";
arrow;
box "\fIpic\fP(1)"
arrow;
box width 1.2 "\fIgtbl\fP(1) or \fIgeqn\fP(1)" "(optional)" dashed;
arrow;
box "\fIgtroff\fP(1)";
arrow;
ellipse "PostScript"
.PE

This little program illustrates several pic basics. Firstly, we see how to inv oke three object types; ellipses,
arrows, and boxes. We see how to declare text lines to go within an object (and that text can have font
changes in it).We see how to change the line style of an object from solid to dashed. And we see that a
box can be made wider than its default size to accommodate more text (we’ll discuss this facility in detail in
the next section).

We also get to seepic’s simple syntax. Statements are ended by newlines or semicolons.String
quotes are required around all text arguments, whether or not they contain spaces. In general, the order of
command arguments and modifiers like "width 1.2" or "dashed" doesn’t matter, except that the order of text
arguments is significant.

Here are all but one of the basicpic objects at their default sizes:

box
line arrow

circle ellipse

arc

Figure 3-2: Basicpic objects

The missing simple object type is aspline. There is also a way to collect objects intoblock compos-
ites which allows you to treat the whole group as a single object (resembling a box) for many purposes.
We’l l describe both of these later on.

The box, ellipse, circle, and block composite objects areclosed; lines, arrows, arcs and splines are
open. This distinction will often be important in explaining command modifiers.

-3-

Figure 3-2 was produced by the followingpic program, which introduces some more basic concepts:

.PS
box "box";
move;
line "line" "";
move;
arrow "arrow" "";
move;
circle "circle";
move;
ellipse "ellipse";
move;
arc; down; move; "arc"
.PE

The first thing to notice is themovecommand, which moves a default distance (1/2 inch) in the cur-
rent movement direction.

Secondly, see how we can also decorate lines and arrows with text. Theline and arrow commands
each take two arguments here, specifying text to go above and below the object. If you wonder why one
argument would not do, contemplate the output ofarr ow "ow!" :

ow!

Figure 3-3: Text centered on an arrow

When a command takes one text string,pic tries to place it at the object’s geometric center. As you
add more strings,pic treats them as a vertical block to be centered. The program

line "1";
line "1" "2";
line "1" "2" "3";
line "1" "2" "3" "4";
line "1" "2" "3" "4" "5";

for example, gives you this:

1
1
2

1
2
3

1
2
3
4

1
2
3
4
5

Figure 3-4: Effects of multiple text arguments

The last line of Figure 3.2’s program, ‘arc; down; move; " arc" ’, describing the captioned arc, intro-
duces several new ideas. Firstly, we see how to change the direction in which objects are joined. Had we
written arc; move; " arc" , omitting down the caption would have been joined to the top of the arc, like
this:

-4-

arc

Figure 3-5: Result ofarc; move;

This is because drawing an arc changes the default direction to the one its exit end points at.To rein-
force this point, consider:

arc

Figure 3-6: Result ofarc cw; move;

All we’ve done differently here is specify "cw" for a clockwise arc.Observe how it changes the
default direction to down, rather than up.

Another good way to see this via with the following program:

line; arc; arc cw; line

which yields:

Figure 3-7: Result ofline; arc; arc cw; line

Notice that we did not have to specify "up" for the second arc to be joined to the end of the first.

Finally, observe that a string, alone, is treated as text to be surrounded by an invisible box of a size
either specified by width and height attributes or by the defaultstextwid andtextht. Both are initially zero
(because we don’t know the default font size).

4. Sizesand Spacing

Sizes are specified in inches.If you don’t like inches, it’s possible to set a global style variablescale
that changes the unit.Settingscale = 2.54will effectively change the internal unit to centimeters (all other
size variable valuess will be scaled correspondingly).

4.1.

Here are the default sizes forpic objects:

-5-

Object Default Size

box 0.75"wide by 0.5" high
circle 0.5"diameter
ellipse 0.75"wide by 0.5" high
arc 0.5"radius
line 0.5"long
arrow 0.5" long

The simplest way to think about these defaults is that they make the other basic objects fit snugly into
a default-sized box.

4.2. ObjectsDo Not Stretch!

Te xt is rendered in the current font with normal troff l ine spacing.Boxes, circles, and ellipses donot
automatically resize to fit enclosed text. Thus,if you saybox "text far too long" you’ll get this:

this text is far too long for a default box

Figure 4-1: Boxes do not automatically resize

which is probably not the effect you want.

4.3. ResizingBoxes

To change the box size, you can specify a box width with the "width" modifier:

this text is far too long for a default box

Figure 4-2: Result ofbox width 3

This modifier takes a dimension in inches.There is also a "height" modifier that will change a box’s
height. Thewidth keyword may be abbreviated toewid; theheight keyword toheight.

4.4. ResizingOther Object Types

To change the size of a circle, give it a rad or diam modifier; this changes the radius or diameter of
the circle, according to the numeric argument that follows.

0.1

0.2 0.3

Figure 4-3: Circles with increasing radii

The move command can also take a dimension, which just tells it how many inches to move in the
current direction.

Ellipses are sized to fit in the rectangular box defined by their axes, and can be resized withwidth
andheight like boxes.

-6-

You can also change the radius of curvature of an arc withrad (which specifies the radius of the cir-
cle of which the arc is a segnmment). Larger values yield flatter arcs.

0.1 0.2 0.3

Figure 4-4:arc rad with increasing radii

Observe that because an arc is defined as a quarter circle, increasing the radius also increases the size
of the arc’s bounding box.

4.5. The‘same’ Keyword

In place of a dimension specification, you can use the keyword same. This gives the object the same
size as the previous one of its type. As an example, the program

.PS
box; box wid 1 ht 1; box same; box
.PE

gives you

Figure 4-5: Thesamekeyword

5. GeneralizedLines and Splines

5.1. DiagonalLines

It is possible to specify diagonal lines or arrows by adding multipleup, down, left, and right modi-
fiers to the line object.Any of these can have a multiplier. To understand the effects, think of the drawing
area as being gridded with standard-sized boxes.

line up left arr ow up left 1 arr ow up left 1.5 arr ow up left 2

Figure 5-1: Diagonal arrows (dotted boxes show the implied 0.5-inch grid)

5.2. Multi-SegmentLine Objects

A "line" or "arrow" object may actually be a path consisting of any number of segments of varying
lengths and directions.To describe a path, connect several line or arrow commands with the keyword then.

-7-

Figure 5-2:line right 1 then down .5 left 1 then right 1

5.3. SplineObjects

If you start a path with thespline keyword, the path vertices are treated as control points for a spline
curve fit.

The spline curve...

1 2

3 4

...with tangents displayed

Figure 5-3:spline right 1 then down .5 left 1 then right 1

You can describe many natural-looking but irregular curves this way. For example:

spline right then up then left then down ->; spline left then up right then down right ->;

Figure 5-4: Two more spline examples

Note the arrow decorations. Arrowheads can be applied naturally to any path-based object, line or
spline. We’ll see how in the next section.

6. DecoratingObjects.

6.1. DashedObjects

We’v e already seen that the modifierdashedcan change the line style of an object from solid to
dashed. GNUgpic permits you to dot or dash ellipses, circles, and arcs (and splines inτx mode only);
some versions of DWB may only permit dashing of lines and boxes. It’s possible to change the dash inter-
val by specifying a number after the modifier.

default 0.05 0.1 0.15 0.2

Figure 6-1: Dashed objects

6.2. DottedObjects

Another available qualifier isdotted. GNU gpic permits you to dot or dash ellipses, circles, and arcs
(and splines inτx mode only); some versions of DWB may only permit dashing of lines and boxes. Ittoo
can be suffixed with a number to specify the interval between dots:

-8-

default 0.05 0.1 0.15 0.2

Figure 6-2: Dotted objects

6.3. RoundingBox Corners

It is also possible, in GNUgpic only, to modify a box so it has rounded corners

rad 0.05 rad 0.1 rad=0.15 rad=0.2 rad=0.25

Figure 6-3:box rad with increasing radius values;

Radius values higher than half the minimum box dimension are silently truncated to that value.

6.4. Arrowheads

Lines and arcs can be decorated as well.Any line or arc (and any spline as well) can be decorated
with arrowheads by adding one or more as modifiers:

Figure 6-4: Double-headed line made withline <- ->

In fact, thearr ow command is just shorthand forline ->. And there is a double-head modifier <->,
so the figure above could have been made withWline <-> .

Arrowheads have awidth attribute, the distance across the rear; and aheight attribute, the length of
the arrowhead along the shaft.

Arrowhead style is controlled by the style variablearr owhead. The DWB and GNU versions inter-
pret it differently. DWB defaults to open arrowheads and anarr owhead value of 2; the Kernighan paper
says a value of 7 will make solid arrowheads. GNUgpic defaults to solid arrowheads and anarr owhead
value of 1; a value of 0 will produce open arrowheads.

6.5. LineThickness

It’s also possible to change the line thickness of an object (this is a GNU extension, DWB pic doesn’t
support it.). The default thickness of the lines used to draw objects is controlled by thelinethick variable.
This gives the thickness of lines in points.A neg ative value means use the default thickness: inτx output
mode, this means use a thickness of 8 milliinches; inτx output mode with the-c option, this means use the
line thickness specified by.ps lines; in troff output mode, this means use a thickness proportional to the
pointsize. Azero value means draw the thinnest possible line supported by the output device. Initially it
has a value of -1. There is also athicknessattribute (which can be abbreviated tothick). For example,cir-
cle thickness 1.5would draw a circle using a line with a thickness of 1.5 points. The thickness of lines is
not affected by the value of thescalevariable, nor by any width or height given in the.PSline.

6.6. Invisible Objects

The modifierinvis makes an object entirely invisible. Thisused to be useful for positioning text in an
invisible object that is properly joined to neighboring ones.Newer DWB versions and GNUpic treat stan-
dalone text in exactly this way.

-9-

6.7. FilledObjects

It is possible to fill boxes, circles, and ellipses. The modifierfill[ed] accomplishes this.You can suf-
fix it with a fill value; the default is given by the stule variablefillval .

DWB pic and gpic have opposite conventions for fill values and different defaults. DWB fillval
defaults to 0.3 and smaller values are darker; GNUfillval uses 0 for white and 1 for black.

Figure 6-5:circle fill; move; circle fill 0.4; move; circle fill 0.9;

GNU gpic makes some additional guarantees.A fi ll value greater than 1 can also be used: this means
fill with the shade of gray that is currently being used for text and lines. Normally this will be black, but
output devices may provide a mechanism for changing this. The invisible attribute does not affect the fill-
ing of objects.Any text associated with a filled object will be added after the object has been filled, so that
the text will not be obscured by the filling.

The closed-object modifiersolid is equivalent to fill with the darkest fill value (DWB pic had this
capability but mentioned it only in a reference opinion).

7. More About Text Placement

By default, text is centered at the geometric center of the object it is associated with.The modifier
ljust causes the left end to be at the specified point (which means that the text lies to the right of the speci-
fied place!), The modifierrjust puts the right end at the place.The modifiersabove andbelow center the
text one half line space in the given direction.

Te xt attributes can be combined:

ljust text rjust text
ljust above

rjust below

Figure 7-1: Text attributes

What actually happens is that n text strings are centered in a box that istextwid wide bytextht high.
Both these variables are initially zero (that ispic’s way of not making assumptions about[tg]roff (1)’s
default point size).

In GNU gpic, objects can have an aligned attribute. Thiswill only work when the postprocessor is
grops. Any text associated with an object having thealigned attribute will be rotated about the center of
the object so that it is aligned in the direction from the start point to the end point of the object.Note that
this attribute will have no effect for objects whose start and end points are coincident.

8. More About Direction Changes

We’v e already seen how to change the direction in which objects are composed from rightwards to
downwards. Hereare some more illustrative examples:

-10-

right; box; arr ow; circle; arr ow; ellipse

left; box; arr ow; circle; arr ow; ellipse

Figure 8-1: Effects of different motion directions (right and left)

down; box; arrow; circle; arr ow; ellipse; up; box; arr ow; circle; arr ow; ellipse;

Figure 8-2: Effects of different motion directions (up and down)

Something that may appear surprising happens if you change directions in the obvious way:

Figure 8-3:box; arrow; circle; down; arr ow; ellipse

You might have expected that program to yield this:

-11-

Figure 8-4: More intuitive?

But, in fact, to get Figure 8.3 you have to do this:

.PS
box;
arrow;
circle;
move to last circle .s;
down;
arrow;
ellipse
.PE

Why is this? Becausethe exit point for the current direction is already set when you draw the object.The
second arrow in Figure 8.2 dropped downwards from the circle’s attachment point for an object to be joined
to the right.

The meaning of the commandmove to last circle .sshould be obvious. Inorder to see how it gener-
alizes, we’ll need to go into detail on two important topics; locations and object names.

9. NamingObjects

The most natural way to name locations inpic is relative to objects. Inorder to do this, you have to
be able you have to be able to name objects.Thepic language has rich facilities for this that try to emulate
the syntax of English.

9.1. NamingObjects By Order Of Drawing

The simplest (and generally the most useful) way to name an object is with alast clause. Itneeds to
be followed by an object type name;box, circle, ellipse, line, arr ow, spline or [] (the last type refers to a
composite objectwhich we’ll discuss later). So, for example, thelast circle clause in the program attached
to Figure 9.1.3 refers to the last circle drawn.

More generally, objects of a given type are implicitly numbered (starting from 1).You can refer to
(say) the third ellipse in the current picture with3rd ellipse, or to the first box as1st box, or to the fifth line
as5th line.

Objects are also numbered backwards by type from the last one of You can say2nd last box to get
the second-to-last box, or3rd last ellipseto get the third-to-last box.

In places wherenth is allowed,‘expr’th is also allowed. Note that’th is a single token: no space is
allowed between the’ and theth. For example,

for i = 1 to 4 do {
line from ‘i’th box.nw to ‘i+1’th box.se

}

-12-

9.2. NamingObjects With Labels

You can also specify an object by referring to a label.A label is a word (which must begin with a
capital letter) followed by a colon; you declare it by placing it immediately before the object drawing com-
mand. For example, the program

.PS
A: box "first" "object"
move;
B: ellipse "second" "object"
move;
arrow left at A;
.PE

declares labelsA andB for its first and second objects. Here’s what that looks like:

first
object

second
object

Figure 9-1: Example of label use

The at statement in the fourth line uses the labelA (the behavior ofat will be explained in the next sec-
tion). We’ll see later on that labels are most useful for referring to block composite objects.

Labels are not constants but variables (you can view colon as a sort of assignment).You can say
something like A: A + (1,0); and the effect will be to reassign the labelA to designate a position one inch
to the right of its old value.

10. Describinglocations

The location of points can be described in many different ways. All these forms are interchangeable
as for as thepic language syntax is concerned; where you can use one, any of the others that would make
semantic sense are allowed.

The special labelHere always refers to the current position.

10.1. AbsoluteCoordinates

The simplest is absolute coordinates in inches;pic uses a Cartesian system with (0, 0) at the lower
left corner of the virtual drawing surface for each picture (that is, X increases to the right and Y increases
upwards). Anabsolute location may always be written in the conventional form as two comma-separated
numbers surrounded by parentheses (and this is recommended for clarity).In contexts where it creates no
ambiguity, the pair of X and Y coordinates suffices without punctuation.

It is a good idea to avoid absolute coordinates, however. They tend to make picture descriptions diffi-
cult to understand and modify. Instead, there are quite a number of ways to specify locations relative to pic
objects and previous locations.

10.2. LocationsRelative to Objects

The symbolhere always refers to the position of the last object drawn or the destination of the last
move.

Alone and unqualified, alast circle or any other way of specifying a closed-object or arc location
refers as a position to the geometric center of the object.Unqualified, the name of a line or spline object
refers to the position of the object start.

Also, pic objects have quite a few named locations associated with them. One of these is the object
center, which can be indicated (redundantly) with the suffix .center (or just.c). Thus,last circle .centeris
equivalent tolast circle.

-13-

10.2.1. LocationsRelative to Closed Objects

Every closed object (box, circle, ellipse, or block composite) also has eight compass points associ-
ated with it;

.c

.n .ne

.e

.se.s.sw

.w

.nw

.c

.n
.ne

.e

.se
.s

.sw

.w

.nw

.c

.n
.ne

.e

.se
.s

.sw

.w

.nw

Figure 10-1: Compass points

these are the locations where eight compass rays from the geometric center would intersect the figure.So
when we saylast circle .swe are referring to the south compass point of the last circle drawn. Theexpla-
nation of Figure 7.3’s program is now complete.

(In case you dislike compass points, the names.top, .bottom, .left and.right are synonyms for.n, .s,
.e, and .w respectively; they can even be abbreviated to.t, .b, .l and.r).

The namescenter, top, bottom, left andright can also be used (without the leading dot) in a prefix
form marked byof; thus,center of last circle and top of 2nd last ellipse are both valid object refer-
ences.

Arc objects also have compass point; they are the compass points of the implied circle.

10.2.2. LocationsRelative to Open Objects

Every open object (line, arrow, arc, or spline) has three named points;.start, .center, and .end. They
can also be used without leading dots in theof prefix form. The center of an arc is the center of its circle,
but the center of a line, path, or spline is halfway between its endpoints.

.center

.start

.end

.center

.start

.end

.center

.start

.end

.center

.start

.end

Figure 10-2: Special points on open objects

10.3. Ways of Composing Positions

Once you have two positions to work with, there are several ways to combine them to specify new
positions.

10.3.1. Vector Sums and Displacements

Any two positions may be added or subtracted to yield a new position. Theresult is the conventional
vector sum or difference of coordinates.For example, last box .ne + (0.1, 0)is a valid position.This
example illustrates a common use, to define a position slightly offset from a named one (say, for captioning
purposes).

10.3.2. Interpolation Between Positions

A position may be interpolated between any two positions. Thesyntax is ‘fraction of the way
betweenposition1and position2.’ For example, you can say1/3 of the way between here and last ellipse
.ne. The fraction may be in numerator/denominator form or may be an ordinary number (values arenot

-14-

restricted to [0,1]). As an alternative to this verbose syntax, you can say ‘fraction <position1 , posi-
tion2>.’ ; thus, the example could also be written1/3<here, last ellipse>.

P

Figure 10-3:P: 1/3 of the way between last arrow .start and last arrow .end

This facility can be used, for example, to double connections.

yin yang

Figure 10-4: Doubled arrows

You can get Figure 10-4 from the following program:

.PS
A: box "yin"; move;
B: box "yang";
arrow right at 1/4 <A.e,A.ne>;
arrow left at 1/4 <B.w,B.sw>;
.PE

Note the use of the short form for interpolating points.

10.3.3. Projections of Points

Given two positionsp andq, the position(p, q) has the X coordinate ofp and the Y coordinate ofq.
This can be helpful in placing an object at one of the corners of the virtual box defined by two other
objects.

(B,A) is here

B(A,B) is here

A

Figure 10-5: Using (x, y) composition

10.4. UsingLocations

There are four ways to use locations;at, from , to, and with . All three are object modifiers; that is,
you use them as suffixes to a drawing command.

The at modifier says to draw a closed object or arc with its center at the following location, or to
draw a line/spline/arrow starting at the following location.

The to modifier can be used alone to specify a move destination. Thefrom modifier can be used
alone in the same way asat.

-15-

The from andto modifiers can be used with aline or arc command to specify start and end points of
the object. In conjunction with named locations, this offers a very flexible mechanism for connecting
objects. For example, the following program

.PS
box "from"
move 0.75;
ellipse "to"
arc cw from 1/3 of the way \

between last box .n and last box .ne to last ellipse .n;
.PE

yields:

from to

Figure 10-6: A tricky connection specified with English-like syntax

The with modifier allows you to identify a named attachment point of an object with another point.
This is very useful for connecting objects in a natural way. For an example, consider these two programs:

box wid 0.5 ht 0.5; box wid 0.75 ht 0.75 box wid 0.5 ht 0.5; box wid 0.75 ht 0.75 with .sw at last box .se;

Figure 10-7: Using thewith modifier for attachments

10.5. Thechop modifier

When drawing lines between circles that don’t intersect them at a compass point, it is useful to be
able to shorten a line by the radius of the circle at either or both ends. Consider the following program:

.PS
circle "x"
circle "y" at 1st circle - (0.4, 0.6)
circle "z" at 1st circle + (0.4, -0.6)
arrow from 1st circle to 2nd circle chop
arrow from 2nd circle to 3rd circle chop
arrow from 3rd circle to 1st circle chop
.PE

It yields the following:

-16-

x

y z

Figure 10-8: Thechopmodifier

Notice that thechop attribute moves arrowheads rather than stepping on them. By default, thechop modi-
fier shortens both ends of the line bycirclerad. By suffixing it with a number you can change the amount
of chopping.

If you sayline ... chopr1 chop r2 with r1 andr2 both numbers, you can vary the amount of chop-
ping at both ends.You can use this in combination with trigonometric functions to write code that will deal
with more complex intersections.

11. ObjectGroups

There are two different ways to group objects inpic; brace groupingandblock composites.

11.1. BraceGrouping

The simpler method is simply to group a set of objects within curly bracket or brace characters.On
exit from this grouping, the current position and direction are restored to their value when the opening
brace was encountered.

11.2. BlockComposites

A block composite object is created a series of commands enclosed by square brackets. Thecompos-
ite can be treated for most purposes like a single closed object, with the size and shape of its bounding box.
Here is an example. Theprogram fragment

A: [
circle;
line up 1 at last circle .n;
line down 1 at last circle .s;
line right 1 at last circle .e;
line left 1 at last circle .w;
box dashed with .nw at last circle .se + (0.2, -0.2);
Caption: center of last box;

]

yields the block in figure 11-1, which we show both with and without its attachment points. The block’s
location becomes the value ofA.

-17-

.c

.n .ne

.e

.se.s.sw

.w

.nw

Figure 11-1: A sample composite object

To refer to one of the composite’s attachment points, you can say (for example)A .s. For purposes of
object naming, composites are a class.You could writelast [] .sas an equivalent refrence, usable anywhere
a location is needed. This construction is very important for putting together large, multi-part diagrams.

Blocks are also a variable-scoping mechanism, like agroff(1) environment. Allvariable assignments
done inside a block are undone at the end of it.To get at values within a block, write a name of the block
followed by a dot, followed by the variable or label you want. For example, we could refer the the center of
the box in the above composite aslast [] .Caption or A.Caption.

This kind of reference to a label can be used in any way any other location can be.For example, if
we added"Hi!" at A.Caption the result would look like this:

Hi!

Figure 11-2: Adding a caption using interior labeling

You can also use interior labels in either part of awith modifier. This means that the example com-
posite could be placed relative to its caption box by a command containingwith A.Caption at.

Blocks may be nested. This means you can use block attachment points to build up complex dia-
grams hierarchically, from the inside out.Note thatlast and the other sequential naming mechanisms don’t
look inside blocks, so if you have a program that looks like

-18-

.PS
P: [box "foo"; ellipse "bar"];
Q: [

[box "baz"; ellipse "quxx"]
"random text";

]
arrow from 2nd last [];
.PE

the arrow in the last line will be attached to objectP, not objectQ.

In DWB pic, only references one level deep into enclosed blocks were permitted. GNUgpic removes
this restriction.

The combination of block variable scoping, assignability of labels and the macro facility that we’ll
describe later on can be used to simulate functions with local variables (just wrap the macro body in block
braces).

12. StyleVariables

There are a number of global style variables inpic that can be used to change its overall behavior.
We’v e mentioned several of them in previous sections.They’re all described here.For each variable, the
default is given.

Style Variable Default What It Does

boxht 0.5 Default height of a box
boxwid 0.75 Default height of a box
lineht 0.5 Default length of vertical line
linewid 0.75 Default length of horizontal line
arcrad 0.25 Default radius of an arc
circlerad 0.25 Default radius of a circle
ellipseht 0.5 Default height of an ellipse
ellipsewid 0.75 Default width of an ellipse
moveht 0.5 Default length of vertical move
movewid 0.75 Default length of horizontal move
textht 0 Default height of box enclosing a text object
textwid 0 Default width of box enclosing a text object
arrowht 0.1 Length of arrowhead along shaft
arrowwid 0.05 Width of rear of arrowhead
arrowhead 1 Enable/disable arrowhead filling
dashwid 0.05 Interval for dashed lines
maxpswid 11 Maximum width of picture
maxpsht 8.5 Maximum height of picture
scale 1 Unit scale factor
fillv al 0.5 Default fill value

Any of these variables can be set with a simple assignment statement.For example:

-19-

Figure 12-1:boxht=1; boxwid=0.3; movewid=0.2; box; move; box; move; box; move; box;

In GNU pic, setting thescalevariable re-scales all size-related state variables so that their values
remain equivalent in the new units.

The commandresetresets all style variables to their defaults. You can give it a comma-separated list
of variable names as arguments, in which case it resets only those.

State variables retain their values across pictures until reset.

13. Expressions, Variables, and Assignment

A number is a valid expression, of course (all numbers are stored internally as floating-point).Deci-
mal-point notation is acceptable; in GNUgpic, scientific notation in C’s ‘e’ format (like 5e-2) is accepted.

Anywhere a number is expected, the language will also accept a variable. Variables may be the built-
in style variable described in the last section, or new variables created by assignment.

DWB pic supports only the ordinary assignment via =, defines the variable in the current block if it is
not already defined there, and then changes the value in the current block.GNU gpic supports an alternate
form of assignment using :=. Thevariable (right side) must already be defined, and the value ofvariable
will be changed only in the innermost block in which it is defined.

You can use the height, width, radius, and x and y coordinates of any object or corner in expressions
If A is an object label or name, all the following are valid:

A.x # x c oordinate of the center of A
A.ne.y # y c oordinate of the northeast corner of A
A.wid # the width of A
A.ht # and its height
2nd last circle.rad # t he radius of the 2nd last circle

Note the second expression, showing how to extract a corner coordinate.

Basic arithmetic resembling those of C operators are available; +, *, -, /, and %.So is ˆ for exponen-
tiation. Groupingis permitted in the usual way using parentheses.GNU gpic allows logical operators to
appear in expressions; ! (logical negation, not factorial), &&, ||, ==, !=, >=, <=, <, >.

Various built-in functions are supported:sin(x), cos(x), log(x), exp(x), sqrt(x), max(x,y), atan2(x,y),
min(x,y), int(x), and rand(), Both exp and log are base 10; int does integer truncation; and rand()
returns a random number in [0-1).

GNU gpic also documents a one-argument form or rand,rand(x), which returns a random number
between 1 andx, but this is deprecated and may be removed in a futur e version.

The functionsprintf() behaves like a Csprintf(3) that only takes %, %e, %f, and %g format strings.

14. Macros

You can define macros inpic. This is useful for diagrams with repetitive parts. Inconjunction with
the scope rules for block composites, it effectively gives you the ability to write functions.

The syntax is

define name { replacement text}

-20-

This definesnameas a macro to be replaced by the replacement text (not including the braces). The macro
may be called as

name(arg1, arg2, ... argn)

The arguments (if any) will be substituted for tokens $1, $2 ... $n appearing in the replacement text.

As an example of macro use, consider the following:

.PS
Plot a single jumper in a $1 by $2 box, $3 is the on-off state
define jumper { [

shrinkfactor = 0.8;
Outer: box invis wid 0.5 ht 1;

Count on end] to reset these
boxwid = Outer.wid * shrinkfactor / 2;
boxht = Outer.ht * shrinkfactor / 2;

box fill (!$1) with .s at center of Outer;
box fill ($1) with .n at center of Outer;

] }

Plot a block of six jumpers
define jumperblock {

jumper($1);
jumper($2);
jumper($3);
jumper($4);
jumper($5);
jumper($6);

jwidth = last [].Outer.wid;
jheight = last [].Outer.ht;

box with .nw at 6th last [].nw wid 6*jwidth ht jheight;

Use {} to avoid changing position from last box draw.
This is necessary so move in any direction will work as expected
{"Jumpers in state $1$2$2$3$4$5$6" at last box .s + (0, -0.2);}

}

Sample macro invocations
jumperblock(1,1,0,0,1,0);
move;
jumperblock(1,0,1,0,1,1);

It yields the following:

-21-

Jumpers in state 1110010 Jumpers in state 1001011

Figure 14-1: Sample use of a macro

This macro example illustrates how you can combine [], brace grouping, and variable assignment to write
true functions.

One detail the example above does not illustrate is the fact that macro argument parsing is not token-
oriented. Ifyou call jumper(1), the value of $1 will be" 1 " . You could even call jumper(big string) to
give $1 the value"big string" .

If you want to pass in a coordinate pair, you can avoid getting tripped up by the comma by wrapping
the pair in parentheses.

Macros persist through pictures.To undefine a mcro, sayundef name; for example,

undef jumper
undef jumperblock

would undefine the two macros in the jumper block example.

15. Import/Export Commands

Commands that import or export data betweenpic and its environment are described here.

15.1. Fileand Table Insertion

The statement

copy filename

inserts the contents offilenamein thepic input stream.Any .PS/.PE pair in the file will be ignored.This,
you can use this to include pre-generated images.

A variant of this statement replicates thecopy thru feature ofgrap(1). If you say

copy filenamethru macro

calls themacro(which may be either a name or replacement text) on the arguments obtained by breaking
each line of the file into blank-separated fields. The macro may have up to 9 arguments. Thereplacement
text may be delimited by braces or by a pair of instances of any character not appearing in the rest of the
text.

If you write

copy thru macro

omitting the filename, lines to be parsed are taken from the input source up to the next .PE.

In either of thecopy commands, GNUgpic permits a trailing ‘until word’ clause to be added which
terminates the copy when the first word matches the argument (the default behavior is therefore equivalent
to until .PE,

Accordingly, the command

.PS
copy thru % circle at ($1,$2) % until "END"

-22-

1 2
3 4
5 6
END
box
.PE

is equivalent to

.PS
circle at (1,2)
circle at (3,4)
circle at (5,6)
box
.PE

15.2. Debug Messages

The commandprint accepts any number of comma-separated arguments, concatenates their output
forms, and writes the result to standard error. Each argument must be an expression, a position, or a text
string.

15.3. Escapeto Post-Processor

If you write

commandarg . . .

pic concatenates the arguments and pass them through as a line to troff or TEX. Eacharg must be an
expression, a position, or text. Thishas a similar effect to a line beginning with. or \, but allows the values
of variables to be passed through.

15.4. ExecutingShell Commands

The command

sh { anything... }

macroexpands the text in braces, then executes it as a shell command. This could be used to generate
images or data tables for later inclusion.The delimiters shown as {} here may also be two copies of any
one character not present in the shell command text. In either case, the body may contain balanced {}
pairs. Stringsin the body may contain balanced or unbalanced braces in any case.

16. Control-flow constructs

Thepic language provides conditionals and looping.For example,

pi = atan2(0, -1);
for i = 0 to 2 * pi by 0.1 do {

"-" at (i/2, 0);
"." at (i/2, sin(i)/2);
":" at (i/2, cos(i)/2);

}

which yields this:

-23-

-.

:

-.

:

-
.

:

-
.

:

-

.

:

-

.

:

-

.
:

-

.:

-

.:

-

.
:

-

.
:

-

.

:

-

.

:
-

.

:
-

.

:
-

.

:-

.

:-

.

:-

.

:
-

.

:
-

.

:

-

.

:

-

.

:

-

.

:

-

.

:

-

.

:

-

.

:

-

.

:

-
.

:

-
.

:

-.

:

-.

:

-.

:

-
.

:

-
.

:

-
.

:

-

.

:

-

.
:

-

.
:

-

.:

-

.:

-

.
:

-

.
:

-

.

:

-

.

:
-

.

:
-

.

:-

.

:-

.

:-

.

:
-

.

:
-

.

:
-

.

:

-

.

:

-

.

:

-

.

:

-

.

:

-

.

:

-

.

:

-
.

:

-
.

:

-
.

:

-.

:

Figure 16-1: Plotting with afor loop

The syntax of thefor statement is:

for variable= expr1 to expr2 [by [*]expr3] do X body X

The semantics are as follows: Setvariable to expr1 . While the value ofvariable is less than or equal to
expr2, do bodyand incrementvariable by expr3; if by is not given, incrementvariable by 1. If expr3 is
prefixed by* thenvariable will instead be multiplied byexpr3. X can be any character not occurring in
body; or the two Xs may be paired braces (as in theshcommand).

The syntax of theif statement is as follows:

if expr then X if-true X[elseY if-false Y]

Its semantics are as follows: Evaluateexpr; if it i s non-zero then doif-true, otherwise doif-false. X can be
any character not occurring inif-true. Y can be any character not occurring inif-false.

Eithe or both of the X or Y pairs may instead be balanced pairs of braces ({ and }) as in thesh com-
mand. Ineither case, theif-true may contain balanced pairs of braces.None of these delimiters will be
seen inside strings.

All the usual relational operators my be used in conditional expressions; ! (logical negation, not fac-
torial), &&, ||, ==, !=, >=, <=, <, >.

String comparison is also supported using == and !=. String comparisons may need to be parenthe-
sized to avoid syntactic ambiguities.

17. InterfaceTo [gt]roff

The output ofpic is [gt]roff drawing commands. The GNUgpic(1) command warns that it relies on
drawing extensions present ingroff(1) that are not present introff(1).

17.1. ScalingArguments

The DWB pic(1) program will accept one or two arguments to.PS, which is interpreted as a width
and height in inches to which the results ofpic(1) should be scaled (width and height scale independently).
If there is only one argument, it is interpreted as a width to scale the picture to, and height will be scaled by
the same proportion.

GNU gpic is less general; it will accept a single width to scale to, or a zero width and a maximum
height to scale to.With two nonzero arguments, it will scale to the maximum height.

17.2. How Scaling is Handled

Whenpic processes a picture description on input, it passes .PS and .PE through to the postprocessor.
The .PS gets decorated with two numeric arguments which are the X and Y dimensions of the picture in
inches. Thepost-processor can use these to reserve space for the picture and center it.

Themgsmacros, for example, include the following definitions:

-24-

.de PS

.br

.sp \n[DD]u

.ie \n[.$]<2 .@error bad arguments to PS (not preprocessed with pic?)

.el . ds@need (u;\$1)+1v

. i n +(u;\n[.l]-\n[.i]-\$2/2>?0)

.

..

.de PE

.par@reset

.sp \n[DD]u+.5m

..

Equivalent definition will be supplied by GNUpic(1) if you use the -mpic option; this should make it
usable with macro pages other thanms(1).

if .PF is used instead of .PE, thetroff position is restored to what it was at the picture start
(Kernighan notes that the F stands for "flyback").

The invocation

.PS <file

causes the contents offile to replace the .PS line. This feature is deprecated; usecopy file instead).

By default, input lines that begin with a period are passed to the postprocessor, embedded at the cor-
responding point in the output.Messing with horizontal or vertical spacing is an obvious recipe for bugs,
but point size and font changes will usually be safe.

Point sizes and font changes are also safe within text strings, as long as they are undone before the
end of string.

The state of[gt]roff ’s fill mode is preserved across pictures.

The Kernighan paper notes that there is a subtle problem with complicated equations insidepic pic-
tures; they come out wrong ifeqn(1) hasto leave extra vertical space for the equation. If your equation
involves more than subscripts and superscripts, you must add to the beginning of each equation the extra
informationspace 0 . He giv es the following example:

arrow
box "$space 0 {H(omega)} over {1 - H(omega)}$"
arrow

H(ω)

1 − H(ω)

Figure 17-1: Equations within pictures

18. Interfaceto TeX

TEX mode is enabled by the−t option. InTEX mode, pic will define a vbox called\graph for each
picture. You must yourself print that vbox using, for example, the command

\centerline{\box\graph}

Actually, since the vbox has a height of zero this will produce slightly more vertical space above the picture
than below it;

\centerline{\raise 1em\box\graph}

-25-

would avoid this.

You must use a TEX driver that supports thetpic specials, version 2.

Lines beginning with\ are passed through transparently; a% is added to the end of the line to avoid
unwanted spaces.You can safely use this feature to change fonts or to change the value of\baselineskip.
Anything else may well produce undesirable results; use at your own risk. Lines beginning with a period
are not given any special treatment.

Theτx mode ofpic(1) will not translatetroff font and size changes included in text strings!

19. ObsoleteCommands

GNU gpic(1) hasa command

plot expr [" text"]

This is a text object which is constructed by usingtext as a format string for sprintf with an argument of
expr. If text is omitted a format string of "%g" is used.Attributes can be specified in the same way as for a
normal text object. Be very careful that you specify an appropriate format string;pic does only very lim-
ited checking of the string. This is deprecated in favour of sprintf .

20. SomeLarger Examples

Here are a few larger examples, with complete source code.

One of our earlier examples is generated in an instructive way using a for loop:

.PS
Draw a demonstration up left arrow with grid box overlay
define gridarrow
{

[
{arrow up left $1;}
box wid 0.5 ht 0.5 dotted with .nw at last arrow .end;
for i = 2 to ($1 / 0.5) do
{

box wid 0.5 ht 0.5 dotted with .sw at last box .se;
}
move down from last arrow .center;
[

if ($1 == boxht) then { "\fBline up left\fP" } else { sprintf("\fBarrow up left %g\fP", $1) };
]

]
move right from last [] .e;

}
gridarrow(0.5);
gridarrow(1);
gridarrow(1.5);
gridarrow(2);
undef gridarrow
.PE

-26-

line up left arr ow up left 1 arr ow up left 1.5 arr ow up left 2

Figure 20-1: Diagonal arrows (dotted boxes show the implied 0.5-inch grid)

Here’s an example concocted to demonstrate layout of a large, multiple-part pattern:

-27-

.PS
define filter {box ht 0.25 rad 0.125}
lineht = 0.25;
Top: [

right;
box "\fBms\fR" "sources";
move;
box "\fBHTML\fR" "sources";
move;
box "\fBlinuxdoc-sgml\fP" "sources" wid 1.5;
move;
box "\fBTexinfo\fP" "sources";

line down from 1st box .s lineht;
A: line down;
line down from 2nd box .s; filter "\fBhtml2ms";
B: line down;
line down from 3rd box .s; filter "\fBformat\fP";
C: line down;
line down from 4th box .s; filter "\fBtexi2roff\fP";
D: line down;

]
move down 1 from last [] .s;
Anchor: box wid 1 ht 0.75 "\fBms\fR" "intermediate" "form";
arrow from Top.A.end to Anchor.nw;
arrow from Top.B.end to 1/3 of the way between Anchor.nw and Anchor.ne;
arrow from Top.C.end to 2/3 of the way between Anchor.nw and Anchor.ne;
arrow from Top.D.end to Anchor.ne
{

PostScript column
move to Anchor .sw;
line down left then down ->;
filter "\fBpic\fP";
arrow;
filter "\fBeqn\fP";
arrow;
filter "\fBtbl\fP";
arrow;
filter "\fBgroff\fP";
arrow;
box "PostScript";

HTML column
move to Anchor .se;
line down right then down ->;
A: filter dotted "\fBpic2img\fP";
arrow;
B: filter dotted "\fBeqn2html\fP";
arrow;
C: filter dotted "\fBtbl2html\fP";
arrow;
filter "\fBms2html\fP";
arrow;
box "HTML";

-28-

Nonexistence caption
box dashed wid 1 at B + (2, 0) "These tools" "don’t yet exist";
line chop 0 chop 0.1 dashed from last box .nw to A.e ->;
line chop 0 chop 0.1 dashed from last box .w to B.e ->;
line chop 0 chop 0.1 dashed from last box .sw to C.e ->;

}
.PE

ms
sources

HTML
sources

linuxdoc-sgml
sources

Texinfo
sources

html2ms format texi2roff

ms
intermediate

form

pic

eqn

tbl

groff

PostScript

aNi’aNi’aNi’aNi’

pic2img

aNi’aNi’aNi’aNi’

eqn2html

aNi’aNi’aNi’aNi’

tbl2html

ms2html

HTML

These tools
don’t yet exist

Figure 20-2: Hypothetical production flow for dual-mode publishing

21. PICReference

This is an annotated grammar of PIC.

-29-

21.1. LexicalItems

In general,pic is a free-format, token-oriented language that ignores whitespace outside strings.But
certain lines and contructs are specially interpreted at the lexical level:

A comment begins with # and continues to \n (comments may also follow text in a line). A line
beginning with a period or backslash may be interpreted as text to be passed through to the post-processor,
depending on command-line options. An end-of-line backslash is interpreted as a request to continue the
line; the backslash and following newline are ignored.

Here are the grammar terminals:

<number>
A decimal numeric constant. May contain a decimal point or be expressed in scientific notation in
the style ofprintf(3)’s %e escape. (All variables are represented internally in floating-point.)

<string>
Any ASCII characters surrounded by a pair of double quotes. May contain a double quote if pre-
ceded by a backslash.

<variable>
A lower-case alphabetic character, followed by any number of alphanumerics.(Values of variables
are preserved across pictures.)

<label>
An upper-case alphabetic character, followed by any number of alphanumerics.

21.2. Semi-Formal Grammar

Tokens not enclosed in <> are literals, except:

1. \nis a newline

2. threedots is a suffix meaning ‘replace with 0 or more repetitions of the preceding element.

3. enclosurein square brackets has its usual meaning of ‘this clause is optional’.

4. Square-bracket-enclosed portions within tokens are optional.Thus,h[eigh]t matches either ‘height’
or ‘ht’.

If one of these special tokens has to be referred to literally, it is surrounded with single quotes.

The top-level pic object is a picture.

<picture> ::= .PS [width [height]]\n
<statement> ...
.PE \n

Thewidth andheightarguments, if present, causepic to attempt to scale the picture to the given dimensions
in inches. In no case, however, will the X and Y dimensions of the picture exceed the values of the style
variablesmaxpswid, maxpsheight(which default to the normal 8.5 by 11 page size).

If the ending .PS is replaced by .PF, the page vertical position is restored to its value at the time .PS was
encountered. Anotheralternate form of invocation is.PS < filename, which replaces the .PS line with a
file to be interpreted bypic (but this feature is deprecated).

The .PS, .PE, and .PF macros to perform centering and scaling are normally supplied by the post-processor.

-30-

<statement> ::= <command> ;
<command> \n

<command> ::= <primitive> <modifier>...
<label> : <command>
<label> : <position>
<variable> = <expr>
<direction>
{ < command> ... }
’[’ <command> ... ’]’
for <var> = <expr> to <expr> [by <expr>] do { <command> ... }
if <expr> then { <command> ... } [else { <command> ... }]
copy <filename> [until <word>]
copy <filename> thru <macroname> [until <word>]
sh <balanced-text>
print <print-item>
reset [<variable> ...]

The current position and direction are saved on entry to a { } and restored on exit from it.

Drawn objects within [] are treated as a single composite object with a rectangular shape (that of the
bounding box of all the elements).Variable and label assignments within a block are local to the block.
Current direction of motion is restored to the value at start of block upon exit. Position is not restored
(unlike { }) i nstead, the current position becomes the exit position for the current direction on the block’s
bounding box.

-31-

<primitive> ::= box # Closed object -- rectangle
circle # Closed object -- circle
ellipse # Closed object -- ellipse
arc # Open object -- quarter-circle
line # Open object -- line
arrow # Open object -- line with arrowhead
spline # Open object -- spline curve
move
<text> <text> ... # Text within invisible box

<attribute> ::= h[eigh]t <expr> # Set height of closed figure
wid[th] <expr> # Set width of closed figure
rad[ius] <expr> # Set radius of circle/arc
diam[eter] <expr> # Set diameter of circle/arc
up [<expr>] # Move up
down [<expr>] # Move down
left [<expr>] # Move left
right [<expr>] # Move right
from <position> # Set from position of open figure
to <position> # Set to position of open figure
at <position> # Set center of open figure
with <corner> # Fix corner at specified location
by <expr> <expr> # Set object’s attachment point
then # Sequential segment composition
dotted [<expr>] # Set dotted line style
dashed [<expr>] # Set dashed line style
chop [<expr>] # Chop end(s) of segment
-> # Decorate with "to" arrow
<- # Decorate with "from" arrow
<-> # Decorate with both arrows
invis # Make primitive invisible
solid # Make closed figure solid
fill <expr> # Set fill density for figure
same # Copy size of previous object
<text> <text> ... # Text within object
<expr> # Motion in the current direction

Missing attributes are supplied from defaults; inappropriate ones are silently ignored.For lines, splines,
and arcs, height and width refer to arrowhead size.

Theat primitive sets the center of the current object.Thewith attribute fixes the specified feature
of the given object to a specified location.

Thesolid primitive is not yet supported in GNUgpic.

Theby primitive is not documented in the tutorial portion of the Kernighan paper, and should proba-
bly be considered unreliable.

The primitivearr ow is a synonym forline ->.

<text> ::= <string> [<placement> ...]
sprintf("format", <expr> ...) [<placement> ...]

<placement> ::= center | ljust | rjust | above | below

Te xt is normally an attribute of some object, in which case successive strings are vertically stacked and cen-
tered on the object’s center by default. Standalonetext is treated as though placed in an invisible box.

-32-

A text item consists of a string or sprintf-expression, optionally followed by positioning information.
Te xt or format strings may contain {gtn}roff font changes, size changes, and local motions, provided those
changes are undone before the end of the current item.

A position is an (x, y) coordinate pair. There are lots of different ways to specify positions:

<position> ::= <expr> , < expr>
<place> {+-} <expr> , <expr>
<place> {+-} (<expr> , <expr>)
(< position> , <position>)
<expr> [of the way] between <position> and <position>
<expr> ’<’ <position> , <position> ’>’
(< position>)

<place> ::= <label> [<dot-corner>]
<corner> of <label>
[0|1|2|3|4|5|6|7|8|9]th [last] <primitive> <dot-corner>
<expr>’th [last]<primitive> <dot-corner>
<corner> of [0|1|2|3|4|5|6|7|8|9]th [last] <primitive>
<corner> of <expr>’th [last] <primitive>
Here

<dot-corner> ::= .n | .e | .w | .s | .ne | .nw | .se | .sw | .c | .start | .end

<corner> ::= top | bot | left | right | start | end

As Kernighan notes, "since barbarisms like 1th and 3th are barbaric, synonyms like 1st and 3rd are
accepted as well". Objects of a given type are numbered from 1 upwards in order of declaration; thelast
modifier counts backwards.

The "’th" form (which allows you to select a previous object with an expression, as opposed to a
numeric literal) is bnot documented in DWBpic(1).

The following style variables control output:

Style Variable Default What It Does

boxht 0.5 Default height of a box
boxwid 0.75 Default height of a box
lineht 0.5 Default length of vertical line
linewid 0.75 Default length of horizontal line
arcrad 0.25 Default radius of an arc
circlerad 0.25 Default radius of a circle
ellipseht 0.5 Default height of an ellipse
ellipsewid 0.75 Default width of an ellipse
moveht 0.5 Default length of vertical move
movewid 0.75 Default length of horizontal move
textht 0 Default height of box enclosing a text object
textwid 0 Default width of box enclosing a text object
arrowht 0.1 Length of arrowhead along shaft
arrowwid 0.05 Width of rear of arrowhead
arrowhead 1 Enable/disable arrowhead filling
dashwid 0.05 Interval for dashed lines
maxpswid 11 Maximum width of picture
maxpsht 8.5 Maximum height of picture
scale 1 Unit scale factor
fillv al 0.5 Default fill value

-33-

Any of these can be set by assignment, or reset using theresetstatement. Stylevariables assigned within []
blocks are restored to their beginning-of-block value on exit; top-level assignments persist across pictures.
Dimensions are divided byscaleon output.

All pic expressions are evaluated in floating point; units default to inches. Expressions have the fol-
lowing simple grammar, with semantics very similar to C expressions:

<expr> ::= <expr> <op> <expr>
! < expr>
(< expr>)
- < expr>
<variable>
<number>
<place> .x
<place> .y
<place> .ht
<place> .wid
<place> .rad
sin(<expr>)
cos(<expr>)
log(<expr>)
exp(<expr>)
sqrt(<expr>)
max(<expr>, <expr>...)
atan2(<expr>, <expr>)
min(<expr>, <expr>...)
int(<expr>)
rand()

<op> := + | - | * | / | % | ˆ |
!= | == | ’<’ | ’>’ | >= | <= |
’||’ | &&

Bothexpandlog are base 10;int does integer truncation; andrand() returns a random number in [0-1).

There aredefine and undef statements which are not part of the grammar (they behave as pre-
processor macros to the language). These may be used to define pseudo-functions.

define name { replacement text}

This definesnameas a macro to be replaced by the replacement text (not including the braces).The macro
may be called as

name(arg1, arg2, ... argn)

The arguments (if any) will be substituted for tokens $1, $2 ... $n appearing in the replacement text. To
undefine a mcro, sayundef name, specifying the name to be undefined.

22. History and Acknowledgements

Original pic was written to go with Joseph Ossanna’s original troff(1) by Brian Kernighan, and later
re-written by Kernighan with substantial enhancements (apparently as part of the evolution of troff(1) into
ditroff(1) to generate device-independent output).

The language had been inspired by some earlier graphics languages includingideal and grap.
Kernighan credits Chris van Wyk (the designer ofideal) with many of the ideas that went intopic.

The pic language was originally described by Brian Kernighan in Bell Labs Computing Science
Technical Report #116 (you can obtain a PostScript copy of the revised version, [1], by sending a mail mes-
sage tonetlib@research.att.comwith a body of ‘send 116 from research/cstr’.). There have been two

-34-

revisions, in 1984 and 1991.

The document you are reading effectively subsumes Kernighan’s description; it was written to fill in
lacunae in the exposition and integrate in descriptions of the GNUgpic(1) features.

The GNUgpic implementation was written and is maintained by James Clark<jjc@jclark.com>.

23. Bibliography

1. Kernighan, B. W. PIC -- A Graphics Language for Typesetting (Revised User Manual)Bell Labs
Computing Science Technical Report #116, December 1991.

2. Van Wyk, C.J.A high-level language for specifying picturesACM Transactions On Graphics1,2
(1982) 163-182.

