/* This file is part of libbrandt. * Copyright (C) 2016 GNUnet e.V. * * libbrandt is free software: you can redistribute it and/or modify it under * the terms of the GNU General Public License as published by the Free Software * Foundation, either version 3 of the License, or (at your option) any later * version. * * libbrandt is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR * A PARTICULAR PURPOSE. See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along with * libbrandt. If not, see . */ /** * @file crypto.c * @brief Implementation of the crypto primitives. * @author Markus Teich */ #include #include #include "crypto.h" #include "internals.h" #include "util.h" #define CURVE "Ed25519" struct zkp_challenge_dl { struct ec_mpi g; struct ec_mpi v; struct ec_mpi a; }; struct zkp_challenge_2dle { struct ec_mpi g1; struct ec_mpi g2; struct ec_mpi v; struct ec_mpi w; struct ec_mpi a; struct ec_mpi b; }; struct zkp_challenge_0og { struct ec_mpi g; struct ec_mpi alpha; struct ec_mpi beta; struct ec_mpi a1; struct ec_mpi a2; struct ec_mpi b1; struct ec_mpi b2; }; static gcry_ctx_t ec_ctx; static gcry_mpi_point_t ec_gen; static gcry_mpi_point_t ec_zero; static gcry_mpi_t ec_n; /** * brandt_crypto_init initializes the crypto system and must be called before * any other function from this file. */ void brandt_crypto_init () { gcry_error_t rc; rc = gcry_mpi_ec_new (&ec_ctx, NULL, CURVE); brandt_assert_gpgerr (rc); ec_gen = gcry_mpi_ec_get_point ("g", ec_ctx, 0); brandt_assert (NULL != ec_gen); ec_zero = gcry_mpi_point_new (0); brandt_assert (NULL != ec_zero); gcry_mpi_ec_sub (ec_zero, ec_gen, ec_gen, ec_ctx); ec_n = gcry_mpi_ec_get_mpi ("n", ec_ctx, 1); brandt_assert (NULL != ec_n); } /* --- HASHING --- */ /** * Hash block of given size. * * @param block the data to #brandt_hash, length is given as a second argument * @param size the length of the data to #brandt_hash in @a block * @param ret pointer to where to write the hashcode */ void brandt_hash (const void *block, size_t size, struct brandt_hash_code *ret) { gcry_md_hash_buffer (GCRY_MD_SHA512, ret, block, size); } /* --- EC --- */ /** * ec_skey_create * * @param[out] skey where to store the generated secret key. This has to be an * already initialized mpi. */ void ec_skey_create (gcry_mpi_t skey) { gcry_mpi_t ret; gcry_sexp_t s_keyparam; gcry_sexp_t priv_sexp; gcry_sexp_t priv_key; gcry_sexp_t priv_key2; gcry_error_t rc; rc = gcry_sexp_build (&s_keyparam, NULL, "(genkey(ecc(curve \"" CURVE "\")" "(flags)))"); brandt_assert_gpgerr (rc); rc = gcry_pk_genkey (&priv_sexp, s_keyparam); brandt_assert_gpgerr (rc); gcry_sexp_release (s_keyparam); priv_key = gcry_sexp_find_token (priv_sexp, "private-key", 11); brandt_assert (NULL != priv_key); gcry_sexp_release (priv_sexp); priv_key2 = gcry_sexp_find_token (priv_key, "d", 1); brandt_assert (NULL != priv_key2); gcry_sexp_release (priv_key); ret = gcry_sexp_nth_mpi (priv_key2, 1, GCRYMPI_FMT_USG); brandt_assert (NULL != ret); gcry_sexp_release (priv_key2); gcry_mpi_snatch (skey, ret); } /** * ec_keypair_create creates a new keypair by creating a random secret key first * and multipyling the base point with it to get the public key. * * @param[out] pkey where to store the generated public key * @param[out] skey where to store the generated secret key. May be NULL if * you're not interested in the secret key and just need a random point. */ void ec_keypair_create (gcry_mpi_point_t pkey, gcry_mpi_t skey) { gcry_mpi_t sk; brandt_assert (NULL != pkey); sk = (NULL == skey) ? gcry_mpi_new (0) : skey; ec_skey_create (sk); gcry_mpi_ec_mul (pkey, sk, ec_gen, ec_ctx); if (NULL == skey) gcry_mpi_release (sk); } /** * ec_keypair_create_base * * @param[out] pkey where to store the generated public key * @param[out] skey where to store the generated secret key * @param[in] base which base point should be used to calculate the public key */ void ec_keypair_create_base (gcry_mpi_point_t pkey, gcry_mpi_t skey, const gcry_mpi_point_t base) { brandt_assert (NULL != pkey); brandt_assert (NULL != skey); brandt_assert (NULL != base); ec_skey_create (skey); gcry_mpi_ec_mul (pkey, skey, base, ec_ctx); } /** * ec_point_cmp compares two curve points * * @param[in] a the first point * @param[in] b the second point * @return 0 if @a a and @a b represent the same point on the curve, something * else otherwise */ int ec_point_cmp (const gcry_mpi_point_t a, const gcry_mpi_point_t b) { int ret = 1; gcry_mpi_t ax = gcry_mpi_new (0); gcry_mpi_t bx = gcry_mpi_new (0); gcry_mpi_t ay = gcry_mpi_new (0); gcry_mpi_t by = gcry_mpi_new (0); brandt_assert (a && b); if (!ax || !bx || !ay || !by) { weprintf ("could not init point in point_cmp"); return 1; } if (!gcry_mpi_ec_get_affine (ax, ay, a, ec_ctx) && !gcry_mpi_ec_get_affine (bx, by, b, ec_ctx)) { ret = gcry_mpi_cmp (ax, bx) || gcry_mpi_cmp (ay, by); } gcry_mpi_release (ax); gcry_mpi_release (bx); gcry_mpi_release (ay); gcry_mpi_release (by); return ret; } /** * mpi_serialize outputs the given MPI value to the given destination buffer in * network byte order. The MPI @a src may not be negative. * * @param[out] dst where to output to * @param[in] src value to write to @a dst */ void mpi_serialize (struct ec_mpi *dst, gcry_mpi_t src) { size_t rsize = 0; if (gcry_mpi_get_flag (src, GCRYMPI_FLAG_OPAQUE)) { /* Store opaque MPIs left aligned. Used by Ed25519 point compression */ unsigned int nbits; const void *vp = gcry_mpi_get_opaque (src, &nbits); brandt_assert (vp); rsize = (nbits + 7) / 8; if (rsize > sizeof (struct ec_mpi)) rsize = sizeof (struct ec_mpi); memcpy (dst, vp, rsize); if (rsize < sizeof (struct ec_mpi)) memset (((char *)dst) + rsize, 0, sizeof (struct ec_mpi) - rsize); } else { /* Store regular MPIs as unsigned ints right aligned into the buffer. */ char *cp = (char *)dst; gcry_error_t rc; rc = gcry_mpi_print (GCRYMPI_FMT_USG, (void *)dst, sizeof (struct ec_mpi), &rsize, src); brandt_assert_gpgerr (rc); /* Shift the output to the right, if shorter than available space */ if (rsize && rsize < sizeof (struct ec_mpi)) { memmove (&cp[sizeof (struct ec_mpi) - rsize], dst, rsize); memset (dst, 0, sizeof (struct ec_mpi) - rsize); } } } /** * mpi_parse converts src buffer into MPI value. * The buffer is interpreted as network byte order, unsigned integer. * * @param[out] dst where to store MPI value. Must be initialized. * @param[in] src raw data source (GCRYMPI_FMT_USG) */ void mpi_parse (gcry_mpi_t dst, const struct ec_mpi *src) { gcry_mpi_t ret; gcry_error_t rc; rc = gcry_mpi_scan (&ret, GCRYMPI_FMT_USG, src, sizeof (struct ec_mpi), NULL); brandt_assert_gpgerr (rc); gcry_mpi_snatch (dst, ret); } /** * ec_point_serialize outputs the given curve point to the @a dst buffer. * * @param[out] dst where to write the raw data to * @param[in] src curve point to write to @a dst */ void ec_point_serialize (struct ec_mpi *dst, const gcry_mpi_point_t src) { gcry_sexp_t s; gcry_ctx_t ctx; gcry_error_t rc; gcry_mpi_t q; brandt_assert (dst); rc = gcry_sexp_build (&s, NULL, "(public-key(ecc(curve " CURVE ")))"); brandt_assert_gpgerr (rc); brandt_assert (NULL != s); rc = gcry_mpi_ec_new (&ctx, s, NULL); brandt_assert_gpgerr (rc); gcry_sexp_release (s); rc = gcry_mpi_ec_set_point ("q", src, ctx); brandt_assert_gpgerr (rc); q = gcry_mpi_ec_get_mpi ("q@eddsa", ctx, 0); brandt_assert (NULL != q); gcry_ctx_release (ctx); mpi_serialize (dst, q); gcry_mpi_release (q); } /** * ec_point_parse parses a point on the Ed25519 curve from @a src into @a dst. * * @param[out] dst where to store the curve point. Must be initialized * @param[in] src raw data source */ void ec_point_parse (gcry_mpi_point_t dst, const struct ec_mpi *src) { gcry_sexp_t s; gcry_ctx_t ctx; gcry_mpi_point_t ret; gcry_error_t rc; rc = gcry_sexp_build (&s, NULL, "(public-key(ecc(curve " CURVE ")(q %b)))", sizeof (struct ec_mpi), src); brandt_assert_gpgerr (rc); rc = gcry_mpi_ec_new (&ctx, s, NULL); brandt_assert_gpgerr (rc); gcry_sexp_release (s); ret = gcry_mpi_ec_get_point ("q", ctx, 0); brandt_assert (ret); gcry_ctx_release (ctx); gcry_mpi_ec_mul (dst, GCRYMPI_CONST_ONE, ret, ec_ctx); gcry_mpi_point_release (ret); } /** * smc_free1 releases all points in @a dst and frees the memory * * @param[in,out] dst The 1 dimensional array to clean up * @param[in] size1 size of the first dimension */ static void smc_free1 (gcry_mpi_point_t *dst, uint16_t size1) { if (NULL == dst) return; for (uint16_t i = 0; i < size1; i++) if (NULL != dst[i]) gcry_mpi_point_release (dst[i]); free (dst); } /** * smc_init1 creates a 1 dimensional array of curve points * * @param[in] size1 size of the first dimension * @return a pointer to the array or NULL on error. * If not used anymore use smc_free2 to reclaim the memory. */ static gcry_mpi_point_t * smc_init1 (uint16_t size1) { gcry_mpi_point_t *ret; if (NULL == (ret = calloc (size1, sizeof (*ret)))) { weprintf ("could not alloc memory for 1 dimensional point array"); return NULL; } for (uint16_t i = 0; i < size1; i++) { if (NULL == (ret[i] = gcry_mpi_point_new (0))) { weprintf ("could not init point in 1 dimensional array. " "out of memory?"); smc_free1 (ret, size1); return NULL; } } return ret; } /** * smc_free2 releases all points in @a dst and frees the memory * * @param[in,out] dst The 2 dimensional array to clean up * @param[in] size1 size of the first dimension * @param[in] size2 size of the second dimension */ static void smc_free2 (gcry_mpi_point_t **dst, uint16_t size1, uint16_t size2) { if (NULL == dst) return; for (uint16_t i = 0; i < size1; i++) for (uint16_t j = 0; j < size2; j++) if (NULL != dst[i][j]) gcry_mpi_point_release (dst[i][j]); free (dst); } /** * smc_init2 creates a 2 dimensional array of curve points * * @param[in] size1 size of the first dimension * @param[in] size2 size of the second dimension * @return a pointer to the array or NULL on error. * If not used anymore use smc_free2 to reclaim the memory. */ static gcry_mpi_point_t ** smc_init2 (uint16_t size1, uint16_t size2) { gcry_mpi_point_t **ret; gcry_mpi_point_t *data; if (NULL == (ret = calloc (size1, sizeof (*ret) + size2 * sizeof (**ret)))) { weprintf ("could not alloc memory for 2 dimensional point array"); return NULL; } data = (gcry_mpi_point_t *)&ret[size1]; for (uint16_t i = 0; i < size1; i++) { ret[i] = &data[i * size2]; for (uint16_t j = 0; j < size2; j++) { if (NULL == (ret[i][j] = gcry_mpi_point_new (0))) { weprintf ("could not init point in 2 dimensional array. " "out of memory?"); smc_free2 (ret, size1, size2); return NULL; } } } return ret; } /** * smc_free3 releases all points in @a dst and frees the memory * * @param[in,out] dst The 3 dimensional array to clean up * @param[in] size1 size of the first dimension * @param[in] size2 size of the second dimension * @param[in] size3 size of the third dimension */ static void smc_free3 (gcry_mpi_point_t ***dst, uint16_t size1, uint16_t size2, uint16_t size3) { if (NULL == dst) return; for (uint16_t i = 0; i < size1; i++) for (uint16_t j = 0; j < size2; j++) for (uint16_t k = 0; k < size3; k++) if (NULL != dst[i][j][k]) gcry_mpi_point_release (dst[i][j][k]); free (dst); } /** * smc_init3 creates a 3 dimensional array of curve points * * @param[in] size1 size of the first dimension * @param[in] size2 size of the second dimension * @param[in] size3 size of the third dimension * @return a pointer to the array or NULL on error. * If not used anymore use smc_free3 to reclaim the memory. */ static gcry_mpi_point_t *** smc_init3 (uint16_t size1, uint16_t size2, uint16_t size3) { gcry_mpi_point_t ***ret; gcry_mpi_point_t **layer1; gcry_mpi_point_t *layer2; if (NULL == (ret = calloc (size1, sizeof (*ret) + size2 * sizeof (**ret) + size2 * size3 * sizeof (***ret)))) { weprintf ("could not alloc memory for 3 dimensional point array"); return NULL; } layer1 = (gcry_mpi_point_t **)&ret[size1]; layer2 = (gcry_mpi_point_t *)&layer1[size1 * size2]; for (uint16_t i = 0; i < size1; i++) { ret[i] = &layer1[i * size2]; for (uint16_t j = 0; j < size2; j++) { layer1[i * size2 + j] = &layer2[(i * size2 + j) * size3]; for (uint16_t k = 0; k < size3; k++) { if (NULL == (ret[i][j][k] = gcry_mpi_point_new (0))) { weprintf ("could not init point in 2 dimensional array. " "out of memory?"); smc_free3 (ret, size1, size2, size3); return NULL; } } } } return ret; } /** * smc_sums_partial calculates sums up until the current index and stores them * in @a out. \f$\forall i \leq len: out_i=\sum_{h=1}^iin_h\f$ * * @param[out] out Where to store the resulting sums. Points must already be * initialized beforehand. * @param[in] in Input points. * @param[in] len The length of @a out. @a in must be at least @a step times @a * len elements long. * @param[in] stepi The amount of items to advance in @a in each step. Can be * used to sum over multi-dimensional arrays. * @param[in] stepo The amount of items to advance in @a out each step. Can be * used to store the sum in multi-dimensional arrays. */ static void smc_sums_partial (gcry_mpi_point_t out[], gcry_mpi_point_t in[], uint16_t len, uint16_t stepi, uint16_t stepo) { brandt_assert (NULL != out); for (uint16_t i = 0, o = 0; o < len * stepo; i += stepi, o += stepo) gcry_mpi_ec_add (out[o], (o ? out[o - stepo] : ec_zero), in[i], ec_ctx); } /** * smc_sum calculates the sum of all input points. * \f$out=\sum_{i=1}^{len}in_i\f$ * * @param[out] out Where to store the result * @param[in] in Input points. * @param[in] len The amount of summands to use from @a in. @a in must be at * least @a step times @a len elements long. * @param[in] step The amount of items to advance in @a in each step. Can be * used to sum over multi-dimensional arrays. */ static void smc_sum (gcry_mpi_point_t out, gcry_mpi_point_t in[], uint16_t len, uint16_t step) { brandt_assert (NULL != out); /**\todo: how to copy a point more efficiently? */ gcry_mpi_ec_add (out, ec_zero, ec_zero, ec_ctx); for (uint16_t i = 0; i < len; i += step) gcry_mpi_ec_add (out, out, in[i], ec_ctx); } /** * smc_gen_keyshare creates the private additive keyshare and computes the * public multiplicative key share * * @param[in,out] ad Pointer to the AuctionData struct to operate on * @param[out] buflen \todo * @return \todo */ unsigned char * smc_gen_keyshare (struct AuctionData *ad, size_t *buflen) { unsigned char *ret; struct proof_dl *proof1; brandt_assert (ad && buflen); *buflen = (sizeof (struct ec_mpi) + sizeof (*proof1)); if (NULL == (ret = calloc (1, *buflen)) || NULL == (ad->y = calloc (ad->n, sizeof (*ad->y)))) { weprintf ("unable to alloc memory for key shares"); return NULL; } proof1 = (struct proof_dl *)(ret + sizeof (struct ec_mpi)); for (uint16_t i = 0; i < ad->n; i++) ad->y[i] = gcry_mpi_point_new (0); ad->x = gcry_mpi_new (0); ec_skey_create (ad->x); smc_zkp_dl (ad->y[ad->i], ad->x, proof1); ec_point_serialize ((struct ec_mpi *)ret, ad->y[ad->i]); return ret; } int smc_recv_keyshare (struct AuctionData *ad, unsigned char *buf, size_t buflen, uint16_t sender) { int ret = 0; struct proof_dl *proof1; gcry_mpi_point_t y = gcry_mpi_point_new (0); brandt_assert (ad && buf); if (buflen != (sizeof (struct ec_mpi) + sizeof (*proof1))) { weprintf ("wrong size of received key share"); goto quit; } proof1 = (struct proof_dl *)(buf + sizeof (struct ec_mpi)); ec_point_parse (y, (struct ec_mpi *)buf); if (smc_zkp_dl_check (y, proof1)) { weprintf ("wrong zkp1 for public key share received"); goto quit; } /**\todo: how to copy a point more efficiently? */ gcry_mpi_ec_add (ad->y[sender], ec_zero, y, ec_ctx); ret = 1; quit: gcry_mpi_point_release (y); return ret; } /** * smc_encrypt_bid \todo * * @param ad TODO * @param buflen TODO */ unsigned char * smc_encrypt_bid (struct AuctionData *ad, size_t *buflen) { unsigned char *ret; unsigned char *cur; struct proof_0og *proof3; gcry_mpi_t r_sum; gcry_mpi_t r_part; brandt_assert (ad && buflen); *buflen = (ad->k * /* k * (alpha, beta, proof3) */ (sizeof (struct ec_mpi) * 2 + /* alpha, beta */ sizeof (*proof3)) + sizeof (struct proof_2dle)); if (NULL == (cur = (ret = calloc (1, *buflen))) || NULL == (ad->alpha = smc_init2 (ad->n, ad->k)) || NULL == (ad->beta = smc_init2 (ad->n, ad->k))) { weprintf ("unable to alloc memory for encrypted bids"); return NULL; } ad->Y = gcry_mpi_point_new (0); smc_sum (ad->Y, ad->y, ad->n, 1); r_sum = gcry_mpi_new (0); r_part = gcry_mpi_new (0); for (uint16_t j = 0; j < ad->k; j++) { proof3 = (struct proof_0og *)(cur + 2 * sizeof (struct ec_mpi)); smc_zkp_0og (j == ad->b, ad->Y, r_part, ad->alpha[ad->i][j], ad->beta[ad->i][j], proof3); ec_point_serialize ((struct ec_mpi *)cur, ad->alpha[ad->i][j]); ec_point_serialize (&((struct ec_mpi *)cur)[1], ad->beta[ad->i][j]); gcry_mpi_addm (r_sum, r_sum, r_part, ec_n); cur += 2 * sizeof (struct ec_mpi) + sizeof (struct proof_0og); } smc_zkp_2dle (NULL, NULL, ad->Y, ec_gen, r_sum, (struct proof_2dle *)cur); gcry_mpi_release (r_sum); gcry_mpi_release (r_part); return ret; } int smc_recv_encrypted_bid (struct AuctionData *ad, unsigned char *buf, size_t buflen, uint16_t sender) { int ret = 0; unsigned char *cur = buf; struct proof_0og *proof3; gcry_mpi_point_t **ct; /* ciphertexts */ gcry_mpi_point_t alpha_sum = gcry_mpi_point_new (0); gcry_mpi_point_t beta_sum = gcry_mpi_point_new (0); brandt_assert (ad && buf); if (buflen != (ad->k * (sizeof (struct ec_mpi) * 2 + sizeof (*proof3)) + sizeof (struct proof_2dle)) || NULL == (ct = smc_init2 (2, ad->k))) { weprintf ("wrong size of received encrypted bid"); goto quit; } gcry_mpi_ec_mul (alpha_sum, GCRYMPI_CONST_ONE, ec_zero, ec_ctx); gcry_mpi_ec_mul (beta_sum, GCRYMPI_CONST_ONE, ec_zero, ec_ctx); for (uint16_t j = 0; j < ad->k; j++) { ec_point_parse (ct[0][j], (struct ec_mpi *)cur); ec_point_parse (ct[1][j], &((struct ec_mpi *)cur)[1]); proof3 = (struct proof_0og *)(cur + 2 * sizeof (struct ec_mpi)); if (smc_zkp_0og_check (ad->Y, ct[0][j], ct[1][j], proof3)) { weprintf ("wrong zkp3 for alpha, beta received"); goto quit; } gcry_mpi_ec_add (alpha_sum, alpha_sum, ct[0][j], ec_ctx); gcry_mpi_ec_add (beta_sum, beta_sum, ct[1][j], ec_ctx); cur += 2 * sizeof (struct ec_mpi) + sizeof (struct proof_0og); } gcry_mpi_ec_sub (alpha_sum, alpha_sum, ec_gen, ec_ctx); if (smc_zkp_2dle_check (alpha_sum, beta_sum, ad->Y, ec_gen, (struct proof_2dle *)cur)) { weprintf ("wrong zkp2 for alpha, beta received"); goto quit; } for (uint16_t j = 0; j < ad->k; j++) { /**\todo: how to copy a point more efficiently? */ gcry_mpi_ec_add (ad->alpha[sender][j], ec_zero, ct[0][j], ec_ctx); gcry_mpi_ec_add (ad->beta[sender][j], ec_zero, ct[1][j], ec_ctx); } smc_free2 (ct, 2, ad->k); ret = 1; /* finally success */ quit: gcry_mpi_point_release (alpha_sum); gcry_mpi_point_release (beta_sum); return ret; } /** * smc_compute_outcome \todo * * @param ad TODO * @param buflen TODO */ unsigned char * smc_compute_outcome (struct AuctionData *ad, size_t *buflen) { unsigned char *ret; unsigned char *cur; gcry_mpi_point_t tmpa = gcry_mpi_point_new (0); gcry_mpi_point_t tmpb = gcry_mpi_point_new (0); gcry_mpi_point_t *tlta1; gcry_mpi_point_t *tltb1; gcry_mpi_point_t **tlta2; gcry_mpi_point_t **tltb2; gcry_mpi_point_t **tlta3; gcry_mpi_point_t **tltb3; struct ec_mpi *gamma; struct ec_mpi *delta; struct proof_2dle *proof2; brandt_assert (ad && buflen); *buflen = (ad->n * ad->k * /* nk * (gamma, delta, proof2) */ (sizeof (*gamma) + sizeof (*delta) + sizeof (*proof2))); if (NULL == (cur = (ret = calloc (1, *buflen))) || NULL == (ad->gamma = smc_init3 (ad->n, ad->n, ad->k)) || NULL == (ad->delta = smc_init3 (ad->n, ad->n, ad->k))) { weprintf ("unable to alloc memory for first price outcome computation"); return NULL; } /* create temporary lookup tables with partial sums */ tlta1 = smc_init1 (ad->k); tltb1 = smc_init1 (ad->k); tlta2 = smc_init2 (ad->n, ad->k); tltb2 = smc_init2 (ad->n, ad->k); tlta3 = smc_init2 (ad->n, ad->k); tltb3 = smc_init2 (ad->n, ad->k); /* temporary lookup table for first summand (no one has a higher bid) */ for (uint16_t i = 0; i < ad->n; i++) { smc_sums_partial (tlta2[i], ad->alpha[i], ad->k, 1, 1); smc_sums_partial (tltb2[i], ad->beta[i], ad->k, 1, 1); for (uint16_t j = 0; j < ad->k; j++) { gcry_mpi_ec_sub (tlta3[i][j], tlta2[i][ad->k - 1], tlta2[i][j], ec_ctx); gcry_mpi_ec_sub (tltb3[i][j], tltb2[i][ad->k - 1], tltb2[i][j], ec_ctx); } brandt_assert (!ec_point_cmp (ec_zero, tlta3[i][ad->k - 1])); brandt_assert (!ec_point_cmp (ec_zero, tltb3[i][ad->k - 1])); } for (uint16_t j = 0; j < ad->k; j++) { smc_sum (tlta1[j], &tlta3[0][j], ad->n, ad->k); smc_sum (tltb1[j], &tltb3[0][j], ad->n, ad->k); } brandt_assert (!ec_point_cmp (ec_zero, tlta1[ad->k - 1])); brandt_assert (!ec_point_cmp (ec_zero, tltb1[ad->k - 1])); /* \todo: merge into one nested i,j loop and one nested j,i loop? */ /* temporary lookup table for second summand (my bid is not lower) */ for (uint16_t i = 0; i < ad->n; i++) { for (uint16_t j = 0; j < ad->k; j++) { gcry_mpi_ec_sub (tlta2[i][j], tlta2[i][j], ad->alpha[i][j], ec_ctx); gcry_mpi_ec_sub (tltb2[i][j], tltb2[i][j], ad->beta[i][j], ec_ctx); } brandt_assert (!ec_point_cmp (ec_zero, tlta2[i][0])); brandt_assert (!ec_point_cmp (ec_zero, tltb2[i][0])); } /* temporary lookup table for third summand (no one with a lower index has * the same bid) */ for (uint16_t j = 0; j < ad->k; j++) { smc_sums_partial (&tlta3[0][j], &ad->alpha[0][j], ad->n, ad->k, ad->k); smc_sums_partial (&tltb3[0][j], &ad->beta[0][j], ad->n, ad->k, ad->k); for (uint16_t i = 0; i < ad->n; i++) { gcry_mpi_ec_sub (tlta3[i][j], tlta3[i][j], ad->alpha[i][j], ec_ctx); gcry_mpi_ec_sub (tltb3[i][j], tltb3[i][j], ad->beta[i][j], ec_ctx); } brandt_assert (!ec_point_cmp (ec_zero, tlta3[0][j])); brandt_assert (!ec_point_cmp (ec_zero, tltb3[0][j])); } for (uint16_t i = 0; i < ad->n; i++) { for (uint16_t j = 0; j < ad->k; j++) { gamma = (struct ec_mpi *)cur; delta = &((struct ec_mpi *)cur)[1]; proof2 = (struct proof_2dle *)(cur + 2 * sizeof (struct ec_mpi)); /* compute inner gamma */ gcry_mpi_ec_add (tmpa, tlta1[j], tlta2[i][j], ec_ctx); gcry_mpi_ec_add (tmpa, tmpa, tlta3[i][j], ec_ctx); /* compute inner delta */ gcry_mpi_ec_add (tmpb, tltb1[j], tltb2[i][j], ec_ctx); gcry_mpi_ec_add (tmpb, tmpb, tltb3[i][j], ec_ctx); /* copy unmasked outcome to all other bidder layers so they don't * have to be recomputed to check the ZK proof_2dle's from other * bidders when receiving their outcome messages */ for (uint16_t a = 0; a < ad->n; a++) { /**\todo: how to copy a point more efficiently? */ gcry_mpi_ec_add (ad->gamma[a][i][j], ec_zero, tmpa, ec_ctx); gcry_mpi_ec_add (ad->delta[a][i][j], ec_zero, tmpb, ec_ctx); } /* apply random masking for losing bidders */ smc_zkp_2dle (ad->gamma[ad->i][i][j], ad->delta[ad->i][i][j], tmpa, tmpb, NULL, proof2); ec_point_serialize (gamma, ad->gamma[ad->i][i][j]); ec_point_serialize (delta, ad->delta[ad->i][i][j]); cur += sizeof (*gamma) + sizeof (*delta) + sizeof (*proof2); } } gcry_mpi_point_release (tmpa); gcry_mpi_point_release (tmpb); smc_free1 (tlta1, ad->n); smc_free1 (tltb1, ad->n); smc_free2 (tlta2, ad->n, ad->k); smc_free2 (tltb2, ad->n, ad->k); smc_free2 (tlta3, ad->n, ad->k); smc_free2 (tltb3, ad->n, ad->k); return ret; } int smc_recv_outcome (struct AuctionData *ad, unsigned char *buf, size_t buflen, uint16_t sender) { int ret = 0; unsigned char *cur = buf; struct proof_2dle *proof2; gcry_mpi_point_t gamma = gcry_mpi_point_new (0); gcry_mpi_point_t delta = gcry_mpi_point_new (0); brandt_assert (ad && buf); if (buflen != (ad->n * ad->k * (2 * sizeof (struct ec_mpi) + sizeof (*proof2)))) { weprintf ("wrong size of received outcome"); goto quit; } for (uint16_t i = 0; i < ad->n; i++) { for (uint16_t j = 0; j < ad->k; j++) { ec_point_parse (gamma, (struct ec_mpi *)cur); ec_point_parse (delta, &((struct ec_mpi *)cur)[1]); proof2 = (struct proof_2dle *)(cur + 2 * sizeof (struct ec_mpi)); if (smc_zkp_2dle_check (gamma, delta, ad->gamma[sender][i][j], ad->delta[sender][i][j], proof2)) { weprintf ("wrong zkp2 for gamma, delta received"); goto quit; } gcry_mpi_ec_add (ad->gamma[sender][i][j], gamma, ec_zero, ec_ctx); gcry_mpi_ec_add (ad->delta[sender][i][j], delta, ec_zero, ec_ctx); cur += 2 * sizeof (struct ec_mpi) + sizeof (*proof2); } } ret = 1; quit: gcry_mpi_point_release (gamma); gcry_mpi_point_release (delta); return ret; } /** * smc_decrypt_outcome \todo * * @param ad TODO * @param buflen TODO */ unsigned char * smc_decrypt_outcome (struct AuctionData *ad, size_t *buflen) { unsigned char *ret; unsigned char *cur; gcry_mpi_point_t tmp = gcry_mpi_point_new (0); struct ec_mpi *phi; struct proof_2dle *proof2; brandt_assert (ad && buflen); *buflen = (ad->n * ad->k * (sizeof (*phi) + sizeof (*proof2))); if (NULL == (cur = (ret = calloc (1, *buflen))) || NULL == (ad->phi = smc_init3 (ad->n, ad->n, ad->k))) { weprintf ("unable to alloc memory for first price outcome decryption"); return NULL; } for (uint16_t i = 0; i < ad->n; i++) { for (uint16_t j = 0; j < ad->k; j++) { phi = (struct ec_mpi *)cur; proof2 = (struct proof_2dle *)(cur + sizeof (*phi)); smc_sum (tmp, &ad->delta[0][i][j], ad->n, ad->n * ad->k); /* copy still encrypted outcome to all other bidder layers so they * don't have to be recomputed to check the ZK proof_2dle's from * other bidders when receiving their outcome decryption messages */ for (uint16_t a = 0; a < ad->n; a++) /**\todo: how to copy a point more efficiently? */ gcry_mpi_ec_add (ad->phi[a][i][j], ec_zero, tmp, ec_ctx); /* decrypt outcome component and prove the correct key was used */ smc_zkp_2dle (ad->phi[ad->i][i][j], NULL, tmp, ec_gen, ad->x, proof2); ec_point_serialize (phi, ad->phi[ad->i][i][j]); cur += sizeof (*phi) + sizeof (*proof2); } } gcry_mpi_point_release (tmp); return ret; } int smc_recv_decryption (struct AuctionData *ad, unsigned char *buf, size_t buflen, uint16_t sender) { int ret = 0; unsigned char *cur = buf; struct proof_2dle *proof2; gcry_mpi_point_t phi = gcry_mpi_point_new (0); brandt_assert (ad && buf); if (buflen != (ad->n * ad->k * (sizeof (struct ec_mpi) + sizeof (*proof2)))) { weprintf ("wrong size of received outcome decryption"); goto quit; } for (uint16_t i = 0; i < ad->n; i++) { for (uint16_t j = 0; j < ad->k; j++) { ec_point_parse (phi, (struct ec_mpi *)cur); proof2 = (struct proof_2dle *)(cur + sizeof (struct ec_mpi)); if (smc_zkp_2dle_check (phi, ad->y[sender], ad->phi[sender][i][j], ec_gen, proof2)) { weprintf ("wrong zkp2 for phi, y received"); goto quit; } gcry_mpi_ec_add (ad->phi[sender][i][j], phi, ec_zero, ec_ctx); cur += sizeof (struct ec_mpi) + sizeof (*proof2); } } ret = 1; quit: gcry_mpi_point_release (phi); return ret; } /** * smc_zkp_dl creates a proof of knowledge of @a x with \f$v = xg\f$ where * \f$g\f$ is the base point on Ed25519. * * @param[out] v output point. Must be known to the verifier. * @param[in] x private key. Knowledge of this number is certified in the proof * @param[out] proof pointer where to save the output proof structure. Must be * shared with the verifier. */ void smc_zkp_dl (gcry_mpi_point_t v, const gcry_mpi_t x, struct proof_dl *proof) { struct zkp_challenge_dl challenge; struct brandt_hash_code challhash; gcry_mpi_point_t a = gcry_mpi_point_new (0); gcry_mpi_t r = gcry_mpi_new (0); gcry_mpi_t c = gcry_mpi_new (0); gcry_mpi_t z = gcry_mpi_new (0); /* v = xg */ gcry_mpi_ec_mul (v, x, ec_gen, ec_ctx); /* a = zg */ ec_keypair_create (a, z); /* compute challenge c */ ec_point_serialize (&challenge.g, ec_gen); ec_point_serialize (&challenge.v, v); ec_point_serialize (&challenge.a, a); brandt_hash (&challenge, sizeof (struct zkp_challenge_dl), &challhash); mpi_parse (c, (struct ec_mpi *)&challhash); gcry_mpi_mod (c, c, ec_n); /* r = z + cx */ gcry_mpi_mulm (r, c, x, ec_n); gcry_mpi_addm (r, r, z, ec_n); ec_point_serialize (&proof->a, a); mpi_serialize (&proof->r, r); gcry_mpi_point_release (a); gcry_mpi_release (r); gcry_mpi_release (c); gcry_mpi_release (z); } /** * smc_zkp_dl_check verifies a proof of knowledge of \f$x = ECDL_g(v)\f$ where * \f$g\f$ is the base point on Ed25519. * * @param[in] v input point. Received from the prover. * @param[in] proof pointer to the proof structure. Received from the prover. * @return 0 if the proof is correct, something else otherwise */ int smc_zkp_dl_check (const gcry_mpi_point_t v, const struct proof_dl *proof) { int ret; struct zkp_challenge_dl challenge; struct brandt_hash_code challhash; gcry_mpi_point_t a = gcry_mpi_point_new (0); gcry_mpi_t r = gcry_mpi_new (0); gcry_mpi_t c = gcry_mpi_new (0); gcry_mpi_point_t left = gcry_mpi_point_new (0); gcry_mpi_point_t right = gcry_mpi_point_new (0); ec_point_parse (a, &proof->a); mpi_parse (r, &proof->r); /* compute challenge c */ ec_point_serialize (&challenge.g, ec_gen); ec_point_serialize (&challenge.v, v); ec_point_serialize (&challenge.a, a); brandt_hash (&challenge, sizeof (struct zkp_challenge_dl), &challhash); mpi_parse (c, (struct ec_mpi *)&challhash); gcry_mpi_mod (c, c, ec_n); /* rg =? a + cv */ gcry_mpi_ec_mul (left, r, ec_gen, ec_ctx); gcry_mpi_ec_mul (right, c, v, ec_ctx); gcry_mpi_ec_add (right, a, right, ec_ctx); ret = ec_point_cmp (left, right); gcry_mpi_point_release (a); gcry_mpi_release (r); gcry_mpi_release (c); gcry_mpi_point_release (left); gcry_mpi_point_release (right); return ret; } /** * smc_zkp_2dle creates a proof that two ECDLs are equal without revealing the * ECDL. \f$v=xg_1, w=xg_2\f$ are calculated as well and can be returned to the * caller if needed. * * @param[out] v first output point. May be NULL if not needed by the caller. * Must be known to the verifier. * @param[out] w second output point. May be NULL if not needed by the caller. * Must be known to the verifier. * @param[in] g1 first base point. Must be known to the verifier. * @param[in] g2 second base point. Must be known to the verifier. * @param[in] x private number to prove knowledge of. May be NULL if not used by * the caller. * @param[out] proof pointer where to save the output proof structure. Must be * shared with the verifier. */ void smc_zkp_2dle (gcry_mpi_point_t v, gcry_mpi_point_t w, const gcry_mpi_point_t g1, const gcry_mpi_point_t g2, const gcry_mpi_t x, struct proof_2dle *proof) { struct zkp_challenge_2dle challenge; struct brandt_hash_code challhash; gcry_mpi_point_t rv; gcry_mpi_point_t rw; gcry_mpi_t rx; gcry_mpi_point_t a = gcry_mpi_point_new (0); gcry_mpi_point_t b = gcry_mpi_point_new (0); gcry_mpi_t r = gcry_mpi_new (0); gcry_mpi_t c = gcry_mpi_new (0); gcry_mpi_t z = gcry_mpi_new (0); rv = (NULL == v) ? gcry_mpi_point_new (0) : v; rw = (NULL == w) ? gcry_mpi_point_new (0) : w; rx = (NULL == x) ? gcry_mpi_new (0) : x; if (NULL == x) ec_skey_create (rx); /* v = x*g1 */ gcry_mpi_ec_mul (rv, rx, g1, ec_ctx); /* w = x*g2 */ gcry_mpi_ec_mul (rw, rx, g2, ec_ctx); /* a = z*g1 */ ec_keypair_create_base (a, z, g1); /* b = z*g2 */ gcry_mpi_ec_mul (b, z, g2, ec_ctx); /* compute challenge c */ ec_point_serialize (&challenge.g1, g1); ec_point_serialize (&challenge.g2, g2); ec_point_serialize (&challenge.v, rv); ec_point_serialize (&challenge.w, rw); ec_point_serialize (&challenge.a, a); ec_point_serialize (&challenge.b, b); brandt_hash (&challenge, sizeof (struct zkp_challenge_dl), &challhash); mpi_parse (c, (struct ec_mpi *)&challhash); gcry_mpi_mod (c, c, ec_n); /* r = z + cx */ gcry_mpi_mulm (r, c, rx, ec_n); gcry_mpi_addm (r, r, z, ec_n); mpi_serialize (&proof->r, r); ec_point_serialize (&proof->a, a); ec_point_serialize (&proof->b, b); if (NULL == v) gcry_mpi_point_release (rv); if (NULL == w) gcry_mpi_point_release (rw); if (NULL == x) gcry_mpi_release (rx); gcry_mpi_point_release (a); gcry_mpi_point_release (b); gcry_mpi_release (r); gcry_mpi_release (c); gcry_mpi_release (z); } /** * smc_zkp_2dle_check verifies a proof of knowledge of \f$x\f$ with \f$v=xg_1\f$ * and \f$w=xg_2\f$. * * @param[in] v first input point. * @param[in] w second input point. * @param[in] g1 first base point. * @param[in] g2 second base point. * @param[in] proof pointer to the proof structure. Received from the prover. * @return 0 if the proof is correct, something else otherwise */ int smc_zkp_2dle_check (const gcry_mpi_point_t v, const gcry_mpi_point_t w, const gcry_mpi_point_t g1, const gcry_mpi_point_t g2, const struct proof_2dle *proof) { int ret; struct zkp_challenge_2dle challenge; struct brandt_hash_code challhash; gcry_mpi_point_t a = gcry_mpi_point_new (0); gcry_mpi_point_t b = gcry_mpi_point_new (0); gcry_mpi_t r = gcry_mpi_new (0); gcry_mpi_t c = gcry_mpi_new (0); gcry_mpi_point_t left = gcry_mpi_point_new (0); gcry_mpi_point_t right = gcry_mpi_point_new (0); mpi_parse (r, &proof->r); ec_point_parse (a, &proof->a); ec_point_parse (b, &proof->b); /* compute challenge c */ ec_point_serialize (&challenge.g1, g1); ec_point_serialize (&challenge.g2, g2); ec_point_serialize (&challenge.v, v); ec_point_serialize (&challenge.w, w); ec_point_serialize (&challenge.a, a); ec_point_serialize (&challenge.b, b); brandt_hash (&challenge, sizeof (struct zkp_challenge_dl), &challhash); mpi_parse (c, (struct ec_mpi *)&challhash); gcry_mpi_mod (c, c, ec_n); /* r*g1 =? a + cv */ gcry_mpi_ec_mul (left, r, g1, ec_ctx); gcry_mpi_ec_mul (right, c, v, ec_ctx); gcry_mpi_ec_add (right, a, right, ec_ctx); ret = ec_point_cmp (left, right); /* r*g2 =? b + cw */ gcry_mpi_ec_mul (left, r, g2, ec_ctx); gcry_mpi_ec_mul (right, c, w, ec_ctx); gcry_mpi_ec_add (right, b, right, ec_ctx); ret |= ec_point_cmp (left, right); gcry_mpi_point_release (a); gcry_mpi_point_release (b); gcry_mpi_release (r); gcry_mpi_release (c); gcry_mpi_point_release (left); gcry_mpi_point_release (right); return ret; } /** * smc_zkp_0og encrypts one of two values and creates a proof that the * ciphertext decrypts to either one of those two values without revealing which * one was encrypted. The two values are the zero point or the base point of the * Ed25519 curve. Encryption is done via ElGamal: \f$(\alpha,\beta)=(m+ry,rg)\f$ * where \f$m\f$ is the value to encrypt, \f$y\f$ is the public key and \f$g\f$ * is the base point. The nonce \f$r\f$ is generated as well and can be returned * to the caller if he needs it (e.g. for another proof). * * @param[in] m_is_gen if true, the base point is encrypted, else the zero point * is encrypted. * @param[in] y public key to use for encryption. * @param[out] r random number used for encryption. May be NULL if caller * doesn't need it. * @param[out] alpha first part of the ciphertext output * @param[out] beta second part of the ciphertext output * @param[out] proof pointer where to save the output proof structure. Must be * shared with the verifier. */ void smc_zkp_0og (int m_is_gen, const gcry_mpi_point_t y, gcry_mpi_t r, gcry_mpi_point_t alpha, gcry_mpi_point_t beta, struct proof_0og *proof) { struct zkp_challenge_0og challenge; struct brandt_hash_code challhash; gcry_mpi_point_t a1 = gcry_mpi_point_new (0); gcry_mpi_point_t a2 = gcry_mpi_point_new (0); gcry_mpi_point_t b1 = gcry_mpi_point_new (0); gcry_mpi_point_t b2 = gcry_mpi_point_new (0); gcry_mpi_t d1 = gcry_mpi_new (0); gcry_mpi_t d2 = gcry_mpi_new (0); gcry_mpi_t r1 = gcry_mpi_new (0); gcry_mpi_t r2 = gcry_mpi_new (0); gcry_mpi_t c = gcry_mpi_new (0); gcry_mpi_t rr; gcry_mpi_t w = gcry_mpi_new (0); rr = (NULL == r) ? gcry_mpi_new (0) : r; /* beta = r*g */ ec_keypair_create (beta, rr); gcry_mpi_mod (rr, rr, ec_n); /* alpha = m + r*y */ gcry_mpi_ec_mul (alpha, rr, y, ec_ctx); gcry_mpi_ec_add (alpha, m_is_gen ? ec_gen : ec_zero, alpha, ec_ctx); if (!m_is_gen) { /* m == 0 */ ec_keypair_create_base (a1, d1, beta); gcry_mpi_mod (d1, d1, ec_n); ec_keypair_create_base (b1, r1, y); gcry_mpi_mod (r1, r1, ec_n); /* a1 = r1*g + d1*beta */ gcry_mpi_ec_mul (a2, r1, ec_gen, ec_ctx); gcry_mpi_ec_add (a1, a2, a1, ec_ctx); /* b1 = r1*y + d1*(alpha-g) */ gcry_mpi_ec_sub (b2, alpha, ec_gen, ec_ctx); gcry_mpi_ec_mul (a2, d1, b2, ec_ctx); gcry_mpi_ec_add (b1, b1, a2, ec_ctx); /* a2 = w * g */ ec_keypair_create_base (a2, w, ec_gen); gcry_mpi_mod (w, w, ec_n); /* b2 = w * y */ gcry_mpi_ec_mul (b2, w, y, ec_ctx); } else { /* m == g */ ec_keypair_create_base (a2, d2, beta); gcry_mpi_mod (d2, d2, ec_n); ec_keypair_create_base (b2, r2, y); gcry_mpi_mod (r2, r2, ec_n); /* a2 = r2*g + d2*beta */ gcry_mpi_ec_mul (a1, r2, ec_gen, ec_ctx); gcry_mpi_ec_add (a2, a1, a2, ec_ctx); /* b2 = r2*y + d2*(alpha-0) */ /* useless subtraction to have same amount of operations as in m == 0 */ gcry_mpi_ec_sub (b1, alpha, ec_zero, ec_ctx); gcry_mpi_ec_mul (a1, d2, b1, ec_ctx); gcry_mpi_ec_add (b2, b2, a1, ec_ctx); /* a1 = w * g */ ec_keypair_create_base (a1, w, ec_gen); gcry_mpi_mod (w, w, ec_n); /* b1 = w * y */ gcry_mpi_ec_mul (b1, w, y, ec_ctx); } /* compute challenge c */ ec_point_serialize (&challenge.g, ec_gen); ec_point_serialize (&challenge.alpha, alpha); ec_point_serialize (&challenge.beta, beta); ec_point_serialize (&challenge.a1, a1); ec_point_serialize (&challenge.a2, a2); ec_point_serialize (&challenge.b1, b1); ec_point_serialize (&challenge.b2, b2); brandt_hash (&challenge, sizeof (struct zkp_challenge_dl), &challhash); mpi_parse (c, (struct ec_mpi *)&challhash); gcry_mpi_mod (c, c, ec_n); if (!m_is_gen) { /* m == 0 */ /* d2 = c - d1 */ gcry_mpi_subm (d2, c, d1, ec_n); /* r2 = w - r*d2 */ gcry_mpi_mulm (r2, rr, d2, ec_n); gcry_mpi_subm (r2, w, r2, ec_n); } else { /* m == g */ /* d1 = c - d2 */ gcry_mpi_subm (d1, c, d2, ec_n); /* r1 = w - r*d1 */ gcry_mpi_mulm (r1, rr, d1, ec_n); gcry_mpi_subm (r1, w, r1, ec_n); } ec_point_serialize (&proof->a1, a1); ec_point_serialize (&proof->a2, a2); ec_point_serialize (&proof->b1, b1); ec_point_serialize (&proof->b2, b2); mpi_serialize (&proof->d1, d1); mpi_serialize (&proof->d2, d2); mpi_serialize (&proof->r1, r1); mpi_serialize (&proof->r2, r2); gcry_mpi_point_release (a1); gcry_mpi_point_release (a2); gcry_mpi_point_release (b1); gcry_mpi_point_release (b2); gcry_mpi_release (d1); gcry_mpi_release (d2); gcry_mpi_release (r1); gcry_mpi_release (r2); gcry_mpi_release (c); if (NULL == r) gcry_mpi_release (rr); gcry_mpi_release (w); } /** * smc_zkp_0og_check verifies a proof that \f$(\alpha,\beta\f$ decrypts either * to the base point \f$g\f$ or the zero point. * * @param[in] y the public key used for encryption * @param[in] alpha first part of the ciphertext * @param[in] beta second part of the ciphertext * @param[in] proof pointer to the proof structure. Received from the prover. * @return 0 if the proof is correct, something else otherwise */ int smc_zkp_0og_check (const gcry_mpi_point_t y, const gcry_mpi_point_t alpha, const gcry_mpi_point_t beta, const struct proof_0og *proof) { int ret; struct zkp_challenge_0og challenge; struct brandt_hash_code challhash; gcry_mpi_point_t a1 = gcry_mpi_point_new (0); gcry_mpi_point_t a2 = gcry_mpi_point_new (0); gcry_mpi_point_t b1 = gcry_mpi_point_new (0); gcry_mpi_point_t b2 = gcry_mpi_point_new (0); gcry_mpi_t d1 = gcry_mpi_new (0); gcry_mpi_t d2 = gcry_mpi_new (0); gcry_mpi_t r1 = gcry_mpi_new (0); gcry_mpi_t r2 = gcry_mpi_new (0); gcry_mpi_t c = gcry_mpi_new (0); gcry_mpi_t sum = gcry_mpi_new (0); gcry_mpi_point_t right = gcry_mpi_point_new (0); gcry_mpi_point_t tmp = gcry_mpi_point_new (0); ec_point_parse (a1, &proof->a1); ec_point_parse (a2, &proof->a2); ec_point_parse (b1, &proof->b1); ec_point_parse (b2, &proof->b2); mpi_parse (d1, &proof->d1); mpi_parse (d2, &proof->d2); mpi_parse (r1, &proof->r1); mpi_parse (r2, &proof->r2); /* compute challenge c */ ec_point_serialize (&challenge.g, ec_gen); ec_point_serialize (&challenge.alpha, alpha); ec_point_serialize (&challenge.beta, beta); ec_point_serialize (&challenge.a1, a1); ec_point_serialize (&challenge.a2, a2); ec_point_serialize (&challenge.b1, b1); ec_point_serialize (&challenge.b2, b2); brandt_hash (&challenge, sizeof (struct zkp_challenge_dl), &challhash); mpi_parse (c, (struct ec_mpi *)&challhash); gcry_mpi_mod (c, c, ec_n); /* c == d1 + d2 */ gcry_mpi_addm (sum, d1, d2, ec_n); ret = gcry_mpi_cmp (c, sum); /* a1 == r1*g + d1*beta */ gcry_mpi_ec_mul (tmp, r1, ec_gen, ec_ctx); gcry_mpi_ec_mul (right, d1, beta, ec_ctx); gcry_mpi_ec_add (right, tmp, right, ec_ctx); ret |= ec_point_cmp (a1, right) << 1; /* b1 == r1*y + d1*(alpha-g) */ gcry_mpi_ec_sub (right, alpha, ec_gen, ec_ctx); gcry_mpi_ec_mul (tmp, d1, right, ec_ctx); gcry_mpi_ec_mul (right, r1, y, ec_ctx); gcry_mpi_ec_add (right, right, tmp, ec_ctx); ret |= ec_point_cmp (b1, right) << 2; /* a2 == r2*g + d2*beta */ gcry_mpi_ec_mul (tmp, d2, beta, ec_ctx); gcry_mpi_ec_mul (right, r2, ec_gen, ec_ctx); gcry_mpi_ec_add (right, right, tmp, ec_ctx); ret |= ec_point_cmp (a2, right) << 3; /* b2 == r2*y + d2*alpha */ gcry_mpi_ec_mul (tmp, d2, alpha, ec_ctx); gcry_mpi_ec_mul (right, r2, y, ec_ctx); gcry_mpi_ec_add (right, right, tmp, ec_ctx); ret |= ec_point_cmp (b2, right) << 4; gcry_mpi_point_release (a1); gcry_mpi_point_release (a2); gcry_mpi_point_release (b1); gcry_mpi_point_release (b2); gcry_mpi_release (d1); gcry_mpi_release (d2); gcry_mpi_release (r1); gcry_mpi_release (r2); gcry_mpi_release (c); gcry_mpi_release (sum); gcry_mpi_point_release (right); gcry_mpi_point_release (tmp); if (ret) weprintf ("ret: 0x%x", ret); return ret; } /* --- unused stuff, might become useful later --- */ ///** // * Clear memory that was used to store a private key. // * // * @param skey the key // */ //void //brandt_ec_key_clear (gcry_mpi_t skey) //{ // gcry_mpi_randomize (skey, 256, GCRY_WEAK_RANDOM); // gcry_mpi_release (skey); //} ///** // * Generate a random value mod n. // * // * @param edc ECC context // * @return random value mod n. // */ //gcry_mpi_t //GNUNET_CRYPTO_ecc_random_mod_n (struct GNUNET_CRYPTO_EccDlogContext *edc) //{ // gcry_mpi_t n; // unsigned int highbit; // gcry_mpi_t r; // // n = gcry_mpi_ec_get_mpi ("n", edc->ctx, 1); // // /* check public key for number of bits, bail out if key is all zeros */ // highbit = 256; /* Curve25519 */ // while ( (! gcry_mpi_test_bit (n, highbit)) && // (0 != highbit) ) // highbit--; // GNUNET_assert (0 != highbit); // /* generate fact < n (without bias) */ // GNUNET_assert (NULL != (r = gcry_mpi_new (0))); // do { // gcry_mpi_randomize (r, // highbit + 1, // GCRY_STRONG_RANDOM); // } // while (gcry_mpi_cmp (r, n) >= 0); // gcry_mpi_release (n); // return r; //}