/* This file is part of libbrandt. * Copyright (C) 2016 GNUnet e.V. * * libbrandt is free software: you can redistribute it and/or modify it under * the terms of the GNU General Public License as published by the Free Software * Foundation, either version 3 of the License, or (at your option) any later * version. * * libbrandt is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR * A PARTICULAR PURPOSE. See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along with * libbrandt. If not, see . */ /** * @file fp_pub.c * @brief Implementation of the first price public outcome algorithm. * @author Markus Teich */ #include "platform.h" #include #include "crypto.h" #include "internals.h" #include "util.h" void fp_priv_prep_outcome (struct BRANDT_Auction *ad) { gcry_mpi_point_t tmpa = gcry_mpi_point_new (0); gcry_mpi_point_t tmpb = gcry_mpi_point_new (0); gcry_mpi_point_t *tlta1; gcry_mpi_point_t *tltb1; gcry_mpi_point_t **tlta2; gcry_mpi_point_t **tltb2; gcry_mpi_point_t **tlta3; gcry_mpi_point_t **tltb3; ad->gamma3 = smc_init3 (ad->n, ad->n, ad->k); brandt_assert (ad->gamma3); ad->delta3 = smc_init3 (ad->n, ad->n, ad->k); brandt_assert (ad->delta3); /* create temporary lookup tables with partial sums */ tlta1 = smc_init1 (ad->k); tltb1 = smc_init1 (ad->k); tlta2 = smc_init2 (ad->n, ad->k); tltb2 = smc_init2 (ad->n, ad->k); tlta3 = smc_init2 (ad->n, ad->k); tltb3 = smc_init2 (ad->n, ad->k); /* temporary lookup table for first summand (no one has a higher bid) */ for (uint16_t i = 0; i < ad->n; i++) { smc_sums_partial (tlta2[i], ad->alpha[i], ad->k, 1, 1); smc_sums_partial (tltb2[i], ad->beta[i], ad->k, 1, 1); for (uint16_t j = 0; j < ad->k; j++) { gcry_mpi_ec_sub (tlta3[i][j], tlta2[i][ad->k - 1], tlta2[i][j], ec_ctx); gcry_mpi_ec_sub (tltb3[i][j], tltb2[i][ad->k - 1], tltb2[i][j], ec_ctx); } brandt_assert (!ec_point_cmp (ec_zero, tlta3[i][ad->k - 1])); brandt_assert (!ec_point_cmp (ec_zero, tltb3[i][ad->k - 1])); } for (uint16_t j = 0; j < ad->k; j++) { smc_sum (tlta1[j], &tlta3[0][j], ad->n, ad->k); smc_sum (tltb1[j], &tltb3[0][j], ad->n, ad->k); } brandt_assert (!ec_point_cmp (ec_zero, tlta1[ad->k - 1])); brandt_assert (!ec_point_cmp (ec_zero, tltb1[ad->k - 1])); /* \todo: merge into one nested i,j loop and one nested j,i loop? */ /* temporary lookup table for second summand (my bid is not lower) */ for (uint16_t i = 0; i < ad->n; i++) { for (uint16_t j = 0; j < ad->k; j++) { gcry_mpi_ec_sub (tlta2[i][j], tlta2[i][j], ad->alpha[i][j], ec_ctx); gcry_mpi_ec_sub (tltb2[i][j], tltb2[i][j], ad->beta[i][j], ec_ctx); } brandt_assert (!ec_point_cmp (ec_zero, tlta2[i][0])); brandt_assert (!ec_point_cmp (ec_zero, tltb2[i][0])); } /* temporary lookup table for third summand (no one with a lower index has * the same bid) */ for (uint16_t j = 0; j < ad->k; j++) { smc_sums_partial (&tlta3[0][j], &ad->alpha[0][j], ad->n, ad->k, ad->k); smc_sums_partial (&tltb3[0][j], &ad->beta[0][j], ad->n, ad->k, ad->k); for (uint16_t i = 0; i < ad->n; i++) { gcry_mpi_ec_sub (tlta3[i][j], tlta3[i][j], ad->alpha[i][j], ec_ctx); gcry_mpi_ec_sub (tltb3[i][j], tltb3[i][j], ad->beta[i][j], ec_ctx); } brandt_assert (!ec_point_cmp (ec_zero, tlta3[0][j])); brandt_assert (!ec_point_cmp (ec_zero, tltb3[0][j])); } for (uint16_t i = 0; i < ad->n; i++) { for (uint16_t j = 0; j < ad->k; j++) { /* compute inner gamma */ gcry_mpi_ec_add (tmpa, tlta1[j], tlta2[i][j], ec_ctx); gcry_mpi_ec_add (tmpa, tmpa, tlta3[i][j], ec_ctx); /* compute inner delta */ gcry_mpi_ec_add (tmpb, tltb1[j], tltb2[i][j], ec_ctx); gcry_mpi_ec_add (tmpb, tmpb, tltb3[i][j], ec_ctx); /* copy unmasked outcome to all other bidder layers so they don't * have to be recomputed to check the ZK proof_2dle's from other * bidders when receiving their outcome messages */ for (uint16_t a = 0; a < ad->n; a++) { ec_point_copy (ad->gamma3[a][i][j], tmpa); ec_point_copy (ad->delta3[a][i][j], tmpb); } } } gcry_mpi_point_release (tmpa); gcry_mpi_point_release (tmpb); smc_free1 (tlta1, ad->k); smc_free1 (tltb1, ad->k); smc_free2 (tlta2, ad->n, ad->k); smc_free2 (tltb2, ad->n, ad->k); smc_free2 (tlta3, ad->n, ad->k); smc_free2 (tltb3, ad->n, ad->k); } /** * fp_priv_compute_outcome computes encrypted outcome shares and packs them into * a message buffer together with proofs of correctnes. * * @param[in] ad Pointer to the BRANDT_Auction struct to operate on * @param[out] buflen Size of the returned message buffer in bytes * @return A buffer containing the encrypted outcome vectors * which needs to be broadcast */ unsigned char * fp_priv_compute_outcome (struct BRANDT_Auction *ad, size_t *buflen) { unsigned char *ret; unsigned char *cur; struct msg_head *head; gcry_mpi_point_t tmpa = gcry_mpi_point_new (0); gcry_mpi_point_t tmpb = gcry_mpi_point_new (0); struct ec_mpi *gamma; struct ec_mpi *delta; struct proof_2dle *proof2; brandt_assert (ad && buflen); *buflen = (sizeof (*head) + /* msg header */ ad->n * ad->k * /* nk * (gamma, delta, proof2) */ (sizeof (*gamma) + sizeof (*delta) + sizeof (*proof2))); ret = GNUNET_new_array (*buflen, unsigned char); head = (struct msg_head *)ret; head->prot_version = htonl (0); head->msg_type = htonl (msg_outcome); cur = ret + sizeof (*head); for (uint16_t i = 0; i < ad->n; i++) { for (uint16_t j = 0; j < ad->k; j++) { gamma = (struct ec_mpi *)cur; delta = &((struct ec_mpi *)cur)[1]; proof2 = (struct proof_2dle *)(cur + 2 * sizeof (struct ec_mpi)); ec_point_copy (tmpa, ad->gamma3[ad->i][i][j]); ec_point_copy (tmpb, ad->delta3[ad->i][i][j]); /* apply random masking for losing bidders */ smc_zkp_2dle (ad->gamma3[ad->i][i][j], ad->delta3[ad->i][i][j], tmpa, tmpb, NULL, proof2); ec_point_serialize (gamma, ad->gamma3[ad->i][i][j]); ec_point_serialize (delta, ad->delta3[ad->i][i][j]); cur += sizeof (*gamma) + sizeof (*delta) + sizeof (*proof2); } } gcry_mpi_point_release (tmpa); gcry_mpi_point_release (tmpb); return ret; } int fp_priv_recv_outcome (struct BRANDT_Auction *ad, const unsigned char *buf, size_t buflen, uint16_t sender) { int ret = 0; const unsigned char *cur = buf; struct proof_2dle *proof2; gcry_mpi_point_t gamma = gcry_mpi_point_new (0); gcry_mpi_point_t delta = gcry_mpi_point_new (0); brandt_assert (ad && buf); if (buflen != (ad->n * ad->k * (2 * sizeof (struct ec_mpi) + sizeof (*proof2)))) { weprintf ("wrong size of received outcome"); goto quit; } for (uint16_t i = 0; i < ad->n; i++) { for (uint16_t j = 0; j < ad->k; j++) { ec_point_parse (gamma, (struct ec_mpi *)cur); ec_point_parse (delta, &((struct ec_mpi *)cur)[1]); proof2 = (struct proof_2dle *)(cur + 2 * sizeof (struct ec_mpi)); if (smc_zkp_2dle_check (gamma, delta, ad->gamma3[sender][i][j], ad->delta3[sender][i][j], proof2)) { weprintf ("wrong zkp2 for gamma, delta received"); goto quit; } ec_point_copy (ad->gamma3[sender][i][j], gamma); ec_point_copy (ad->delta3[sender][i][j], delta); cur += 2 * sizeof (struct ec_mpi) + sizeof (*proof2); } } ret = 1; quit: gcry_mpi_point_release (gamma); gcry_mpi_point_release (delta); return ret; } void fp_priv_prep_decryption (struct BRANDT_Auction *ad) { gcry_mpi_point_t tmp = gcry_mpi_point_new (0); ad->phi3 = smc_init3 (ad->n, ad->n, ad->k); brandt_assert (ad->phi3); ad->phiproofs3 = GNUNET_new_array_3d (ad->n, ad->n, ad->k, struct proof_2dle); brandt_assert (ad->phiproofs3); for (uint16_t i = 0; i < ad->n; i++) { for (uint16_t j = 0; j < ad->k; j++) { smc_sum (tmp, &ad->delta3[0][i][j], ad->n, ad->n * ad->k); /* copy still encrypted outcome to all other bidder layers so they * don't have to be recomputed to check the ZK proof_2dle's from * other bidders when receiving their outcome decryption messages */ for (uint16_t a = 0; a < ad->n; a++) ec_point_copy (ad->phi3[a][i][j], tmp); } } gcry_mpi_point_release (tmp); } static unsigned char * fp_priv_decrypt_outcome_seller (struct BRANDT_Auction *ad, size_t *buflen) { unsigned char *ret; unsigned char *cur; struct msg_head *head; gcry_mpi_point_t tmp = gcry_mpi_point_new (0); struct ec_mpi *phi; struct proof_2dle *proof2; *buflen = (sizeof (*head) + (ad->n - 1) * ad->n * ad->k * (sizeof (*phi) + sizeof (*proof2))); ret = GNUNET_new_array (*buflen, unsigned char); head = (struct msg_head *)ret; head->prot_version = htonl (0); head->msg_type = htonl (msg_decrypt); cur = ret + sizeof (*head); for (uint16_t h = 0; h < ad->n; h++) { for (uint16_t i = 0; i < ad->n; i++) { /* don't reveal outcome to losing bidders */ if (h == i) continue; for (uint16_t j = 0; j < ad->k; j++) { phi = (struct ec_mpi *)cur; proof2 = (struct proof_2dle *)(cur + sizeof (*phi)); ec_point_serialize (phi, ad->phi3[h][i][j]); memcpy (proof2, &ad->phiproofs3[h][i][j], sizeof (*proof2)); cur += sizeof (*phi) + sizeof (*proof2); } } } gcry_mpi_point_release (tmp); return ret; } static unsigned char * fp_priv_decrypt_outcome_bidder (struct BRANDT_Auction *ad, size_t *buflen) { unsigned char *ret; unsigned char *cur; struct msg_head *head; gcry_mpi_point_t tmp = gcry_mpi_point_new (0); struct ec_mpi *phi; struct proof_2dle *proof2; *buflen = (sizeof (*head) + ad->n * ad->k * (sizeof (*phi) + sizeof (*proof2))); ret = GNUNET_new_array (*buflen, unsigned char); head = (struct msg_head *)ret; head->prot_version = htonl (0); head->msg_type = htonl (msg_decrypt); cur = ret + sizeof (*head); for (uint16_t i = 0; i < ad->n; i++) { for (uint16_t j = 0; j < ad->k; j++) { phi = (struct ec_mpi *)cur; proof2 = (struct proof_2dle *)(cur + sizeof (*phi)); ec_point_copy (tmp, ad->phi3[ad->i][i][j]); /* decrypt outcome component and prove the correct key was used */ smc_zkp_2dle (ad->phi3[ad->i][i][j], NULL, tmp, ec_gen, ad->x, proof2); ec_point_serialize (phi, ad->phi3[ad->i][i][j]); cur += sizeof (*phi) + sizeof (*proof2); } } gcry_mpi_point_release (tmp); return ret; } /** * fp_priv_decrypt_outcome decrypts the own shares of the outcome and packs them * into a message buffer together with proofs of correctnes. When this is called * as the seller it will not decrypt anything, but just create the message * buffer from all received decryption shares to broadcast back to all bidders. * * @param[in] ad Pointer to the BRANDT_Auction struct to operate on * @param[out] buflen Size of the returned message buffer in bytes * @return A buffer containing the share of the decrypted outcome * which needs to be broadcast */ unsigned char * fp_priv_decrypt_outcome (struct BRANDT_Auction *ad, size_t *buflen) { brandt_assert (ad && buflen); if (ad->seller_mode) return fp_priv_decrypt_outcome_seller (ad, buflen); else return fp_priv_decrypt_outcome_bidder (ad, buflen); } static int fp_priv_recv_decryption_seller (struct BRANDT_Auction *ad, const unsigned char *buf, size_t buflen, uint16_t sender) { int ret = 0; const unsigned char *cur = buf; struct proof_2dle *proof2; gcry_mpi_point_t phi = gcry_mpi_point_new (0); if (buflen != (ad->n * ad->k * (sizeof (struct ec_mpi) + sizeof (*proof2)))) { weprintf ("wrong size of received outcome decryption from bidder"); goto quit; } for (uint16_t i = 0; i < ad->n; i++) { for (uint16_t j = 0; j < ad->k; j++) { ec_point_parse (phi, (struct ec_mpi *)cur); proof2 = (struct proof_2dle *)(cur + sizeof (struct ec_mpi)); if (smc_zkp_2dle_check (phi, ad->y[sender], ad->phi3[sender][i][j], ec_gen, proof2)) { weprintf ("wrong zkp2 for phi, y received from bidder"); goto quit; } /* store proof. we need to rebroadcast it to the other bidders */ memcpy (&ad->phiproofs3[sender][i][j], proof2, sizeof (*proof2)); ec_point_copy (ad->phi3[sender][i][j], phi); cur += sizeof (struct ec_mpi) + sizeof (*proof2); } } ret = 1; quit: gcry_mpi_point_release (phi); return ret; } static int fp_priv_recv_decryption_bidder (struct BRANDT_Auction *ad, const unsigned char *buf, size_t buflen, uint16_t sender) { int ret = 0; const unsigned char *cur = buf; struct proof_2dle *proof2; gcry_mpi_point_t phi = gcry_mpi_point_new (0); if (buflen != ((ad->n - 1) * ad->n * ad->k * (sizeof (struct ec_mpi) + sizeof (*proof2)))) { weprintf ("wrong size of received outcome decryption from seller"); goto quit; } for (uint16_t h = 0; h < ad->n; h++) { for (uint16_t i = 0; i < ad->n; i++) { /* those combinations are not sent by the seller */ if (h == i) continue; /* we already have our own phi values */ if (h == ad->i) { cur += ad->k * (sizeof (struct ec_mpi) + sizeof (*proof2)); continue; } for (uint16_t j = 0; j < ad->k; j++) { ec_point_parse (phi, (struct ec_mpi *)cur); proof2 = (struct proof_2dle *)(cur + sizeof (struct ec_mpi)); if (smc_zkp_2dle_check (phi, ad->y[h], ad->phi3[h][i][j], ec_gen, proof2)) { weprintf ("wrong zkp2 for phi, y received from seller"); goto quit; } ec_point_copy (ad->phi3[h][i][j], phi); cur += sizeof (struct ec_mpi) + sizeof (*proof2); } } } ret = 1; quit: gcry_mpi_point_release (phi); return ret; } int fp_priv_recv_decryption (struct BRANDT_Auction *ad, const unsigned char *buf, size_t buflen, uint16_t sender) { brandt_assert (ad && buf); if (ad->seller_mode) return fp_priv_recv_decryption_seller (ad, buf, buflen, sender); else return fp_priv_recv_decryption_bidder (ad, buf, buflen, sender); } struct BRANDT_Result * fp_priv_determine_outcome (struct BRANDT_Auction *ad, uint16_t *len) { struct BRANDT_Result *ret; int32_t price = -1; int32_t winner = -1; gcry_mpi_point_t sum_gamma = gcry_mpi_point_new (0); gcry_mpi_point_t sum_phi = gcry_mpi_point_new (0); brandt_assert (ad); for (uint16_t i = 0; i < ad->n; i++) { if (!ad->seller_mode && i != ad->i) continue; for (uint16_t j = 0; j < ad->k; j++) { smc_sum (sum_gamma, &ad->gamma3[0][i][j], ad->n, ad->n * ad->k); smc_sum (sum_phi, &ad->phi3[0][i][j], ad->n, ad->n * ad->k); gcry_mpi_ec_sub (sum_gamma, sum_gamma, sum_phi, ec_ctx); if (!ec_point_cmp (sum_gamma, ec_zero)) { if (-1 != price) { weprintf ("multiple winning prices detected"); return NULL; } if (-1 != winner) { weprintf ("multiple winners detected"); return NULL; } price = j; winner = i; } } } gcry_mpi_point_release (sum_gamma); gcry_mpi_point_release (sum_phi); if (-1 == winner || -1 == price) return NULL; ret = GNUNET_new (struct BRANDT_Result); ret->bidder = winner; ret->price = price; ret->status = BRANDT_bidder_won; if (len) *len = 1; return ret; }