/* This file is part of libbrandt. * Copyright (C) 2016 GNUnet e.V. * * libbrandt is free software: you can redistribute it and/or modify it under * the terms of the GNU General Public License as published by the Free Software * Foundation, either version 3 of the License, or (at your option) any later * version. * * libbrandt is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR * A PARTICULAR PURPOSE. See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along with * libbrandt. If not, see . */ /** * @file crypto.c * @brief Implementation of the crypto primitives. */ #include #include "crypto.h" #include "util.h" #define CURVE "Ed25519" struct brandt_ec_skey { unsigned char d[256 / 8]; }; struct brandt_ec_pkey { unsigned char q_y[256 / 8]; }; gcry_mpi_point_t ec_gen; gcry_ctx_t ec_ctx; /** * brandt_crypto_init * * */ void brandt_crypto_init () { gcry_error_t rc; rc = gcry_mpi_ec_new (&ec_ctx, NULL, CURVE); brandt_assert_gpgerr (rc); ec_gen = gcry_mpi_ec_get_point ("g", ec_ctx, 0); brandt_assert (NULL != ec_gen); } /* --- RANDOM --- */ void brandt_rand_poll () { static unsigned char rand_amount = 255; if (!(rand_amount--)) gcry_fast_random_poll (); } /* --- HASHING --- */ /** * Hash block of given size. * * @param block the data to #brandt_hash, length is given as a second argument * @param size the length of the data to #brandt_hash in @a block * @param ret pointer to where to write the hashcode */ void brandt_hash (const void *block, size_t size, struct brandt_hash_code *ret) { gcry_md_hash_buffer (GCRY_MD_SHA512, ret, block, size); } /* --- MPI --- */ /** * If target != size, move @a target bytes to the end of the size-sized * buffer and zero out the first @a target - @a size bytes. * * @param buf original buffer * @param size number of bytes in @a buf * @param target target size of the buffer */ static void adjust (void *buf, size_t size, size_t target) { char *p = buf; if (size < target) { memmove (&p[target - size], buf, size); memset (buf, 0, target - size); } } /** * Output the given MPI value to the given buffer in * network byte order. * The MPI @a val may not be negative. * * @param buf where to output to * @param size number of bytes in @a buf * @param val value to write to @a buf */ void brandt_mpi_print_unsigned (void *buf, size_t size, gcry_mpi_t val) { size_t rsize; gcry_error_t rc; if (gcry_mpi_get_flag (val, GCRYMPI_FLAG_OPAQUE)) { /* Store opaque MPIs left aligned into the buffer. */ unsigned int nbits; const void *p; p = gcry_mpi_get_opaque (val, &nbits); brandt_assert (NULL != p); rsize = (nbits + 7) / 8; if (rsize > size) rsize = size; memcpy (buf, p, rsize); if (rsize < size) memset (((char *)buf) + rsize, 0, size - rsize); } else { /* Store regular MPIs as unsigned integers right aligned into the buffer. */ rsize = size; rc = gcry_mpi_print (GCRYMPI_FMT_USG, buf, rsize, &rsize, val); brandt_assert_gpgerr (rc); adjust (buf, rsize, size); } } /** * Convert data buffer into MPI value. * The buffer is interpreted as network * byte order, unsigned integer. * * @param result where to store MPI value (allocated) * @param data raw data (GCRYMPI_FMT_USG) * @param size number of bytes in @a data */ void brandt_mpi_scan_unsigned (gcry_mpi_t *result, const void *data, size_t size) { gcry_error_t rc; rc = gcry_mpi_scan (result, GCRYMPI_FMT_USG, data, size, &size); brandt_assert_gpgerr (rc); } //gcry_mpi_point_t //deserialize_point(const struct brandt_point* data, const int len) //{ // gcry_sexp_t s; // gcry_ctx_t ctx; // gcry_mpi_point_t ret; // gcry_error_t rc; // // rc = gcry_sexp_build(&s, NULL, "(public-key(ecc(curve " CURVE ")(q %b)))", // len, data); // brandt_assert_gpgerr(rc); // // rc = gcry_mpi_ec_new(&ctx, s, NULL); // brandt_assert_gpgerr(rc); // gcry_sexp_release(s); // // ret = gcry_mpi_ec_get_point("q", ctx, 0); // brandt_assert(ret); // gcry_ctx_release(ctx); // return ret; //} /* --- EC --- */ /** * Extract values from an S-expression. * * @param array where to store the result(s) * @param sexp S-expression to parse * @param topname top-level name in the S-expression that is of interest * @param elems names of the elements to extract * @return 0 on success */ static int key_from_sexp (gcry_mpi_t *array, gcry_sexp_t sexp, const char *topname, const char *elems) { gcry_sexp_t list; gcry_sexp_t l2; const char *s; unsigned int i; unsigned int idx; list = gcry_sexp_find_token (sexp, topname, 0); if (!list) return 1; l2 = gcry_sexp_cadr (list); gcry_sexp_release (list); list = l2; if (!list) return 2; idx = 0; for (s = elems; *s; s++, idx++) { l2 = gcry_sexp_find_token (list, s, 1); if (!l2) { for (i = 0; i < idx; i++) { gcry_free (array[i]); array[i] = NULL; } gcry_sexp_release (list); return 3; /* required parameter not found */ } array[idx] = gcry_sexp_nth_mpi (l2, 1, GCRYMPI_FMT_USG); gcry_sexp_release (l2); if (!array[idx]) { for (i = 0; i < idx; i++) { gcry_free (array[i]); array[i] = NULL; } gcry_sexp_release (list); return 4; /* required parameter is invalid */ } } gcry_sexp_release (list); return 0; } /** * brandt_ec_skey_create * * @param[out] skey where to store the generated secret key */ void brandt_ec_skey_create (gcry_mpi_t *skey) { gcry_sexp_t s_keyparam; gcry_sexp_t priv_sexp; gcry_error_t rc; rc = gcry_sexp_build (&s_keyparam, NULL, "(genkey(ecc(curve \"" CURVE "\")" "(flags)))"); brandt_assert_gpgerr (rc); rc = gcry_pk_genkey (&priv_sexp, s_keyparam); brandt_assert_gpgerr (rc); gcry_sexp_release (s_keyparam); rc = key_from_sexp (skey, priv_sexp, "private-key", "d"); brandt_assert_gpgerr (rc); gcry_sexp_release (priv_sexp); } /** * brandt_ec_pkey_compute * * @param pkey TODO * @param skey TODO */ void brandt_ec_pkey_compute (gcry_mpi_point_t *pkey, const gcry_mpi_t skey) { } /** * brandt_ec_keypair_create * * @param[out] pkey where to store the generated public key * @param[out] skey where to store the generated secret key */ void brandt_ec_keypair_create (gcry_mpi_point_t *pkey, gcry_mpi_t *skey) { gcry_ctx_t ctx; gcry_sexp_t s_keyparam; gcry_sexp_t priv_sexp; gcry_error_t rc; rc = gcry_sexp_build (&s_keyparam, NULL, "(genkey(ecc(curve \"" CURVE "\")" "(flags)))"); brandt_assert_gpgerr (rc); rc = gcry_pk_genkey (&priv_sexp, s_keyparam); brandt_assert_gpgerr (rc); gcry_sexp_release (s_keyparam); rc = key_from_sexp (skey, priv_sexp, "private-key", "d"); brandt_assert_gpgerr (rc); rc = gcry_mpi_ec_new (&ctx, priv_sexp, NULL); brandt_assert_gpgerr (rc); gcry_sexp_release (priv_sexp); *pkey = gcry_mpi_ec_get_point ("q", ctx, 0); brandt_assert (NULL != *pkey); gcry_ctx_release (ctx); } /** * brandt_ec_keypair_create_base * * @param[out] pkey where to store the generated public key * @param[out] skey where to store the generated secret key * @param[in] base which base point should be used to calculate the public key */ void brandt_ec_keypair_create_base (gcry_mpi_point_t *pkey, gcry_mpi_t *skey, const gcry_mpi_point_t base) { brandt_ec_skey_create (skey); brandt_assert (*skey); *pkey = gcry_mpi_point_new (0); brandt_assert (*pkey); gcry_mpi_ec_mul (*pkey, *skey, base, ec_ctx); } /** * brandt_ec_point_cmp compares two curve points * * @param[in] a the first point * @param[in] b the second point * @return 0 if @a a and @a b represent the same point on the curve, something * else otherwise */ int brandt_ec_point_cmp (const gcry_mpi_point_t a, const gcry_mpi_point_t b) { int ret = 1; gcry_mpi_t ax = gcry_mpi_new (0); gcry_mpi_t bx = gcry_mpi_new (0); gcry_mpi_t ay = gcry_mpi_new (0); gcry_mpi_t by = gcry_mpi_new (0); brandt_assert (a && b); if (!ax || !bx || !ay || !by) { weprintf ("could not init point in point_cmp"); return 1; } if (!gcry_mpi_ec_get_affine (ax, ay, a, ec_ctx) && !gcry_mpi_ec_get_affine (bx, by, b, ec_ctx)) { ret = gcry_mpi_cmp (ax, bx) || gcry_mpi_cmp (ay, by); } gcry_mpi_release (ax); gcry_mpi_release (bx); gcry_mpi_release (ay); gcry_mpi_release (by); return ret; } /** * Convert the given private key from the network format to the * S-expression that can be used by libgcrypt. * * @param priv private key to decode * @return NULL on error */ static gcry_sexp_t decode_private_ecdhe_key (const struct brandt_ec_skey *priv) { gcry_sexp_t result; gcry_error_t rc; rc = gcry_sexp_build (&result, NULL, "(private-key(ecc(curve \"" CURVE "\")" "(d %b)))", (int)sizeof (priv->d), priv->d); brandt_assert_gpgerr (rc); return result; } /** * Extract the public key for the given private key. * * @param priv the private key * @param pub where to write the public key */ void brandt_ecdhe_key_get_public (const struct brandt_ec_skey *priv, struct brandt_ec_pkey *pub) { gcry_sexp_t sexp; gcry_ctx_t ctx; gcry_mpi_t q; gcry_error_t rc; sexp = decode_private_ecdhe_key (priv); brandt_assert (NULL != sexp); rc = gcry_mpi_ec_new (&ctx, sexp, NULL); brandt_assert_gpgerr (rc); gcry_sexp_release (sexp); q = gcry_mpi_ec_get_mpi ("q@eddsa", ctx, 0); brandt_assert (NULL != q); brandt_mpi_print_unsigned (pub->q_y, sizeof (pub->q_y), q); gcry_mpi_release (q); gcry_ctx_release (ctx); } /** * Derive key material from a public and a private ECDHE key. * * @param priv private key to use for the ECDH (x) * @param pub public key to use for the ECDH (yG) * @param key_material where to write the key material (xyG) * @return 0 on error, 1 on success */ int brandt_ecdhe (const struct brandt_ec_skey *priv, const struct brandt_ec_pkey *pub, struct brandt_hash_code *key_material) { gcry_error_t rc; int rc2; gcry_mpi_point_t result; gcry_mpi_point_t q; gcry_mpi_t d; gcry_ctx_t ctx; gcry_sexp_t pub_sexpr; gcry_mpi_t result_x; unsigned char xbuf[256 / 8]; size_t rsize; /* first, extract the q = dP value from the public key */ if (0 != gcry_sexp_build (&pub_sexpr, NULL, "(public-key(ecc(curve " CURVE ")(q %b)))", (int)sizeof (pub->q_y), pub->q_y)) return 0; rc = gcry_mpi_ec_new (&ctx, pub_sexpr, NULL); brandt_assert_gpgerr (rc); gcry_sexp_release (pub_sexpr); q = gcry_mpi_ec_get_point ("q", ctx, 0); /* second, extract the d value from our private key */ brandt_mpi_scan_unsigned (&d, priv->d, sizeof (priv->d)); /* then call the 'multiply' function, to compute the product */ result = gcry_mpi_point_new (0); gcry_mpi_ec_mul (result, d, q, ctx); gcry_mpi_point_release (q); gcry_mpi_release (d); /* finally, convert point to string for hashing */ result_x = gcry_mpi_new (256); rc = gcry_mpi_ec_get_affine (result_x, NULL, result, ctx); brandt_assert (0 == rc); gcry_mpi_point_release (result); gcry_ctx_release (ctx); rsize = sizeof (xbuf); rc2 = gcry_mpi_get_flag (result_x, GCRYMPI_FLAG_OPAQUE); brandt_assert (0 == rc2); /* result_x can be negative here, so we do not use 'brandt_mpi_print_unsigned' * as that does not include the sign bit; x should be a 255-bit * value, so with the sign it should fit snugly into the 256-bit * xbuf */ rc = gcry_mpi_print (GCRYMPI_FMT_STD, xbuf, rsize, &rsize, result_x); brandt_assert_gpgerr (rc); brandt_hash (xbuf, rsize, key_material); gcry_mpi_release (result_x); return 1; } /** * Clear memory that was used to store a private key. * * @param skey location of the key */ void brandt_ec_key_clear (struct brandt_ec_skey *skey) { memset (skey, 0, sizeof (struct brandt_ec_skey)); } /** * Generate a random value mod n. * * @param edc ECC context * @return random value mod n. */ //gcry_mpi_t //GNUNET_CRYPTO_ecc_random_mod_n (struct GNUNET_CRYPTO_EccDlogContext *edc) //{ // gcry_mpi_t n; // unsigned int highbit; // gcry_mpi_t r; // // n = gcry_mpi_ec_get_mpi ("n", edc->ctx, 1); // // /* check public key for number of bits, bail out if key is all zeros */ // highbit = 256; /* Curve25519 */ // while ( (! gcry_mpi_test_bit (n, highbit)) && // (0 != highbit) ) // highbit--; // GNUNET_assert (0 != highbit); // /* generate fact < n (without bias) */ // GNUNET_assert (NULL != (r = gcry_mpi_new (0))); // do { // gcry_mpi_randomize (r, // highbit + 1, // GCRY_STRONG_RANDOM); // } // while (gcry_mpi_cmp (r, n) >= 0); // gcry_mpi_release (n); // return r; //}