/* This file is part of libbrandt. * Copyright (C) 2016 GNUnet e.V. * * libbrandt is free software: you can redistribute it and/or modify it under * the terms of the GNU General Public License as published by the Free Software * Foundation, either version 3 of the License, or (at your option) any later * version. * * libbrandt is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR * A PARTICULAR PURPOSE. See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along with * libbrandt. If not, see . */ /** * @file crypto.c * @brief Implementation of the crypto primitives. */ #include #include #include "crypto.h" #include "internals.h" #include "util.h" #define CURVE "Ed25519" struct zkp_challenge_dl { struct ec_mpi g; struct ec_mpi v; struct ec_mpi a; }; struct zkp_challenge_2dle { struct ec_mpi g1; struct ec_mpi g2; struct ec_mpi v; struct ec_mpi w; struct ec_mpi a; struct ec_mpi b; }; struct zkp_challenge_0og { struct ec_mpi g; struct ec_mpi alpha; struct ec_mpi beta; struct ec_mpi a1; struct ec_mpi a2; struct ec_mpi b1; struct ec_mpi b2; }; static gcry_ctx_t ec_ctx; static gcry_mpi_point_t ec_gen; static gcry_mpi_point_t ec_zero; static gcry_mpi_t ec_n; /** * brandt_crypto_init initializes the crypto system and must be called before * any other function from this file. */ void brandt_crypto_init () { gcry_error_t rc; rc = gcry_mpi_ec_new (&ec_ctx, NULL, CURVE); brandt_assert_gpgerr (rc); ec_gen = gcry_mpi_ec_get_point ("g", ec_ctx, 0); brandt_assert (NULL != ec_gen); ec_zero = gcry_mpi_point_new (0); brandt_assert (NULL != ec_zero); gcry_mpi_ec_sub (ec_zero, ec_gen, ec_gen, ec_ctx); ec_n = gcry_mpi_ec_get_mpi ("n", ec_ctx, 1); brandt_assert (NULL != ec_n); } /* --- RANDOM --- */ void brandt_rand_poll () { static unsigned char rand_amount = 255; if (!(rand_amount--)) gcry_fast_random_poll (); } /* --- HASHING --- */ /** * Hash block of given size. * * @param block the data to #brandt_hash, length is given as a second argument * @param size the length of the data to #brandt_hash in @a block * @param ret pointer to where to write the hashcode */ void brandt_hash (const void *block, size_t size, struct brandt_hash_code *ret) { gcry_md_hash_buffer (GCRY_MD_SHA512, ret, block, size); } /* --- EC --- */ /** * ec_skey_create * * @param[out] skey where to store the generated secret key. This has to be an * already initialized mpi. */ void ec_skey_create (gcry_mpi_t skey) { gcry_mpi_t ret; gcry_sexp_t s_keyparam; gcry_sexp_t priv_sexp; gcry_sexp_t priv_key; gcry_sexp_t priv_key2; gcry_error_t rc; rc = gcry_sexp_build (&s_keyparam, NULL, "(genkey(ecc(curve \"" CURVE "\")" "(flags)))"); brandt_assert_gpgerr (rc); rc = gcry_pk_genkey (&priv_sexp, s_keyparam); brandt_assert_gpgerr (rc); gcry_sexp_release (s_keyparam); priv_key = gcry_sexp_find_token (priv_sexp, "private-key", 11); brandt_assert (NULL != priv_key); gcry_sexp_release (priv_sexp); priv_key2 = gcry_sexp_find_token (priv_key, "d", 1); brandt_assert (NULL != priv_key2); gcry_sexp_release (priv_key); ret = gcry_sexp_nth_mpi (priv_key2, 1, GCRYMPI_FMT_USG); brandt_assert (NULL != ret); gcry_sexp_release (priv_key2); gcry_mpi_snatch (skey, ret); } /** * ec_keypair_create * * @param[out] pkey where to store the generated public key * @param[out] skey where to store the generated secret key */ void ec_keypair_create (gcry_mpi_point_t pkey, gcry_mpi_t skey) { brandt_assert (NULL != pkey); brandt_assert (NULL != skey); ec_skey_create (skey); gcry_mpi_ec_mul (pkey, skey, ec_gen, ec_ctx); } /** * ec_keypair_create_base * * @param[out] pkey where to store the generated public key * @param[out] skey where to store the generated secret key * @param[in] base which base point should be used to calculate the public key */ void ec_keypair_create_base (gcry_mpi_point_t pkey, gcry_mpi_t skey, const gcry_mpi_point_t base) { brandt_assert (NULL != pkey); brandt_assert (NULL != skey); brandt_assert (NULL != base); ec_skey_create (skey); gcry_mpi_ec_mul (pkey, skey, base, ec_ctx); } /** * ec_point_cmp compares two curve points * * @param[in] a the first point * @param[in] b the second point * @return 0 if @a a and @a b represent the same point on the curve, something * else otherwise */ int ec_point_cmp (const gcry_mpi_point_t a, const gcry_mpi_point_t b) { int ret = 1; gcry_mpi_t ax = gcry_mpi_new (0); gcry_mpi_t bx = gcry_mpi_new (0); gcry_mpi_t ay = gcry_mpi_new (0); gcry_mpi_t by = gcry_mpi_new (0); brandt_assert (a && b); if (!ax || !bx || !ay || !by) { weprintf ("could not init point in point_cmp"); return 1; } if (!gcry_mpi_ec_get_affine (ax, ay, a, ec_ctx) && !gcry_mpi_ec_get_affine (bx, by, b, ec_ctx)) { ret = gcry_mpi_cmp (ax, bx) || gcry_mpi_cmp (ay, by); } gcry_mpi_release (ax); gcry_mpi_release (bx); gcry_mpi_release (ay); gcry_mpi_release (by); return ret; } /** * mpi_serialize outputs the given MPI value to the given destination buffer in * network byte order. The MPI @a src may not be negative. * * @param[out] dst where to output to * @param[in] src value to write to @a dst */ void mpi_serialize (struct ec_mpi *dst, gcry_mpi_t src) { size_t rsize = 0; unsigned int nbits; const void *p; gcry_error_t rc; if (gcry_mpi_get_flag (src, GCRYMPI_FLAG_OPAQUE)) { /* Store opaque MPIs left aligned into the buffer. Used by Ed25519 point * compression */ p = gcry_mpi_get_opaque (src, &nbits); brandt_assert (p); rsize = (nbits + 7) / 8; if (rsize > sizeof (struct ec_mpi)) rsize = sizeof (struct ec_mpi); memcpy (dst, p, rsize); if (rsize < sizeof (struct ec_mpi)) memset (((char *)dst) + rsize, 0, sizeof (struct ec_mpi) - rsize); } else { /* Store regular MPIs as unsigned ints right aligned into the buffer. */ rc = gcry_mpi_print (GCRYMPI_FMT_USG, (void *)dst, sizeof (struct ec_mpi), &rsize, src); brandt_assert_gpgerr (rc); /* Shift the output to the right, if shorter than available space */ if (rsize && rsize < sizeof (struct ec_mpi)) { memmove (&dst[sizeof (struct ec_mpi) - rsize], dst, rsize); memset (dst, 0, sizeof (struct ec_mpi) - rsize); } } } /** * mpi_parse converts src buffer into MPI value. * The buffer is interpreted as network byte order, unsigned integer. * * @param[out] dst where to store MPI value. Must be initialized. * @param[in] src raw data source (GCRYMPI_FMT_USG) */ void mpi_parse (gcry_mpi_t dst, const struct ec_mpi *src) { gcry_mpi_t ret; gcry_error_t rc; rc = gcry_mpi_scan (&ret, GCRYMPI_FMT_USG, src, sizeof (struct ec_mpi), NULL); brandt_assert_gpgerr (rc); gcry_mpi_snatch (dst, ret); } /** * ec_point_serialize outputs the given curve point to the @a dst buffer. * * @param[out] dst where to write the raw data to * @param[in] src curve point to write to @a dst */ void ec_point_serialize (struct ec_mpi *dst, const gcry_mpi_point_t src) { gcry_sexp_t s; gcry_ctx_t ctx; gcry_error_t rc; gcry_mpi_t q; brandt_assert (dst); rc = gcry_sexp_build (&s, NULL, "(public-key(ecc(curve " CURVE ")))"); brandt_assert_gpgerr (rc); brandt_assert (NULL != s); rc = gcry_mpi_ec_new (&ctx, s, NULL); brandt_assert_gpgerr (rc); gcry_sexp_release (s); rc = gcry_mpi_ec_set_point ("q", src, ctx); brandt_assert_gpgerr (rc); q = gcry_mpi_ec_get_mpi ("q@eddsa", ctx, 0); brandt_assert (NULL != q); gcry_ctx_release (ctx); mpi_serialize (dst, q); gcry_mpi_release (q); } /** * ec_point_parse parses a point on the Ed25519 curve from @a src into @a dst. * * @param[out] dst where to store the curve point. Must be initialized * @param[in] src raw data source */ void ec_point_parse (gcry_mpi_point_t dst, const struct ec_mpi *src) { gcry_sexp_t s; gcry_ctx_t ctx; gcry_mpi_point_t ret; gcry_error_t rc; rc = gcry_sexp_build (&s, NULL, "(public-key(ecc(curve " CURVE ")(q %b)))", sizeof (struct ec_mpi), src); brandt_assert_gpgerr (rc); rc = gcry_mpi_ec_new (&ctx, s, NULL); brandt_assert_gpgerr (rc); gcry_sexp_release (s); ret = gcry_mpi_ec_get_point ("q", ctx, 0); brandt_assert (ret); gcry_ctx_release (ctx); gcry_mpi_ec_mul (dst, GCRYMPI_CONST_ONE, ret, ec_ctx); } /** * smc_init2 creates a 2 dimensional array of curve points * * @param[in] size1 size of the first dimension * @param[in] size2 size of the second dimension * @return a pointer to the array. If not used anymore use smc_free2 to reclaim * the memory. */ static gcry_mpi_point_t ** smc_init2 (uint16_t size1, uint16_t size2) { uint16_t i, j; gcry_mpi_point_t **ret; gcry_mpi_point_t *data; ret = calloc (size1, sizeof (*ret) + size2 * sizeof (**ret)); brandt_assert (NULL != ret); data = (gcry_mpi_point_t *)&ret[size1]; for (i = 0; i < size1; i++) { ret[i] = &data[i * size2]; for (j = 0; j < size2; j++) ret[i][j] = gcry_mpi_point_new (0); } return ret; } /** * smc_free2 releases all points in @a dst and frees the memory * * @param[in,out] dst The 2 dimensional array to clean up * @param[in] size1 size of the first dimension * @param[in] size2 size of the second dimension */ static void smc_free2 (gcry_mpi_point_t **dst, uint16_t size1, uint16_t size2) { uint16_t i, j; for (i = 0; i < size1; i++) for (j = 0; j < size2; j++) gcry_mpi_point_release (dst[i][j]); free (dst); } /** * smc_init3 creates a 3 dimensional array of curve points * * @param[in] size1 size of the first dimension * @param[in] size2 size of the second dimension * @param[in] size3 size of the third dimension * @return a pointer to the array. If not used anymore use smc_free3 to reclaim * the memory. */ static gcry_mpi_point_t *** smc_init3 (uint16_t size1, uint16_t size2, uint16_t size3) { uint16_t i, j, k; gcry_mpi_point_t ***ret; gcry_mpi_point_t **layer1; gcry_mpi_point_t *layer2; ret = calloc (size1, sizeof (*ret) + size2 * sizeof (**ret) + size2 * size3 * sizeof (***ret)); brandt_assert (NULL != ret); layer1 = (gcry_mpi_point_t **)&ret[size1]; layer2 = (gcry_mpi_point_t *)&layer1[size1 * size2]; for (i = 0; i < size1; i++) { ret[i] = &layer1[i * size2]; for (j = 0; j < size2; j++) { layer1[i * size2 + j] = &layer2[(i * size2 + j) * size3]; for (k = 0; k < size3; k++) ret[i][j][k] = gcry_mpi_point_new (0); } } return ret; } /** * smc_free3 releases all points in @a dst and frees the memory * * @param[in,out] dst The 3 dimensional array to clean up * @param[in] size1 size of the first dimension * @param[in] size2 size of the second dimension * @param[in] size3 size of the third dimension */ static void smc_free3 (gcry_mpi_point_t ***dst, uint16_t size1, uint16_t size2, uint16_t size3) { uint16_t i, j, k; for (i = 0; i < size1; i++) for (j = 0; j < size2; j++) for (k = 0; k < size3; k++) gcry_mpi_point_release (dst[i][j][k]); free (dst); } /** * smc_sums_partial calculates sums up until the current index and stores them * in @a out. \f$\forall i \leq len: out_i=\sum_{h=1}^iin_h\f$ * * @param[out] out Where to store the resulting sums. Points may be given * uninitialized, but the appropriate amount of memory has to be allocated * beforehand. * @param[in] in Input points. * @param[in] len The length of both @a out and @a in. */ static void smc_sums_partial (gcry_mpi_point_t out[], gcry_mpi_point_t in[], uint16_t len) { uint16_t i; for (i = 0; i < len; i++) { out[i] = gcry_mpi_point_new (0); gcry_mpi_ec_add (out[i], in[i], (i ? out[i - 1] : ec_zero), ec_ctx); brandt_assert (NULL != out[i]); } } /** * smc_sum calculates the sum of all input points. * \f$out=\sum_{i=1}^{len}in_i\f$ * * @param[out] out Where to store the result * @param[in] in Input points. * @param[in] len The length of @a in. */ static void smc_sum (gcry_mpi_point_t out, gcry_mpi_point_t in[], uint16_t len) { uint16_t i; brandt_assert (NULL != out); /**\todo: how to copy a point more efficiently? */ gcry_mpi_ec_add (out, ec_zero, ec_zero, ec_ctx); for (i = 0; i < len; i++) gcry_mpi_ec_add (out, out, in[i], ec_ctx); } /** * smc_compute_pkey calculates the shared public key * * @param[in,out] ad The struct AuctionData used */ void smc_compute_pkey (struct AuctionData *ad) { ad->Y = gcry_mpi_point_new (0); smc_sum (ad->Y, ad->y, ad->n); } /** * smc_gen_keyshare creates the private additive keyshare and computes the * public multiplicative key share * * @param[in,out] ad Pointer to the AuctionData struct to operate on */ void smc_gen_keyshare (struct AuctionData *ad) { uint16_t i; ad->y = calloc (ad->n, sizeof (*ad->y)); for (i = 0; i < ad->n; i++) ad->y[0] = gcry_mpi_point_new (0); ad->x = gcry_mpi_new (0); ec_keypair_create (ad->y[ad->i], ad->x); } /** * smc_encrypt_bid \todo * * @param ad TODO * @param j TODO * @param a1 TODO * @param a2 TODO * @param b1 TODO * @param b2 TODO * @param d1 TODO * @param d2 TODO * @param r1 TODO * @param r2 TODO */ void smc_encrypt_bid (struct AuctionData *ad, uint16_t j, gcry_mpi_point_t a1, gcry_mpi_point_t a2, gcry_mpi_point_t b1, gcry_mpi_point_t b2, gcry_mpi_t d1, gcry_mpi_t d2, gcry_mpi_t r1, gcry_mpi_t r2) { smc_zkp_0og (ad->alpha[ad->i][j], (j == ad->b ? ec_gen : ec_zero), ad->Y, ad->beta[ad->i][j], a1, a2, b1, b2, d1, d2, r1, r2); } /** * smc_compute_outcome \todo * * @param ad TODO */ void smc_compute_outcome (struct AuctionData *ad) { uint16_t i, j; // create temporary table with partial sums for (i = 0; i < ad->n; i++) { } /*\todo ZKP*/ } /** * smc_zkp_dl * * @param v \todo * @param g \todo * @param x \todo * @param a \todo * @param r \todo */ void smc_zkp_dl (const gcry_mpi_point_t v, const gcry_mpi_point_t g, const gcry_mpi_t x, const gcry_mpi_point_t a, gcry_mpi_t r) { struct zkp_challenge_dl challenge; struct brandt_hash_code challhash; gcry_mpi_t c = gcry_mpi_new (0); gcry_mpi_t z = gcry_mpi_new (0); ec_keypair_create_base (a, z, g); /* compute challenge c */ ec_point_serialize (&challenge.g, ec_gen); ec_point_serialize (&challenge.v, v); ec_point_serialize (&challenge.a, a); brandt_hash (&challenge, sizeof (struct zkp_challenge_dl), &challhash); mpi_parse (c, (struct ec_mpi *)&challhash); gcry_mpi_mod (c, c, ec_n); gcry_mpi_mulm (r, c, x, ec_n); gcry_mpi_addm (r, r, z, ec_n); gcry_mpi_release (c); gcry_mpi_release (z); } /** * smc_zkp_dl_check * * @param v \todo * @param g \todo * @param a \todo * @param r \todo * @return 0 if the proof is correct, something else otherwise */ int smc_zkp_dl_check (const gcry_mpi_point_t v, const gcry_mpi_point_t g, const gcry_mpi_point_t a, const gcry_mpi_t r) { int ret; struct zkp_challenge_dl challenge; struct brandt_hash_code challhash; gcry_mpi_t c = gcry_mpi_new (0); gcry_mpi_point_t left = gcry_mpi_point_new (0); gcry_mpi_point_t right = gcry_mpi_point_new (0); /* compute challenge c */ ec_point_serialize (&challenge.g, ec_gen); ec_point_serialize (&challenge.v, v); ec_point_serialize (&challenge.a, a); brandt_hash (&challenge, sizeof (struct zkp_challenge_dl), &challhash); mpi_parse (c, (struct ec_mpi *)&challhash); gcry_mpi_mod (c, c, ec_n); gcry_mpi_ec_mul (left, r, g, ec_ctx); gcry_mpi_ec_mul (right, c, v, ec_ctx); gcry_mpi_ec_add (right, a, right, ec_ctx); ret = ec_point_cmp (left, right); gcry_mpi_release (c); gcry_mpi_point_release (left); gcry_mpi_point_release (right); return ret; } /** * smc_zkp_2dle \todo * * @param v TODO * @param w TODO * @param g1 TODO * @param g2 TODO * @param x TODO * @param a TODO * @param b TODO * @param r TODO */ void smc_zkp_2dle (const gcry_mpi_point_t v, const gcry_mpi_point_t w, const gcry_mpi_point_t g1, const gcry_mpi_point_t g2, const gcry_mpi_t x, gcry_mpi_point_t a, gcry_mpi_point_t b, gcry_mpi_t r) { struct zkp_challenge_2dle challenge; struct brandt_hash_code challhash; gcry_mpi_t c = gcry_mpi_new (0); gcry_mpi_t z = gcry_mpi_new (0); ec_keypair_create_base (a, z, g1); gcry_mpi_ec_mul (b, z, g2, ec_ctx); /* compute challenge c */ ec_point_serialize (&challenge.g1, g1); ec_point_serialize (&challenge.g2, g2); ec_point_serialize (&challenge.v, v); ec_point_serialize (&challenge.w, w); ec_point_serialize (&challenge.a, a); ec_point_serialize (&challenge.b, b); brandt_hash (&challenge, sizeof (struct zkp_challenge_dl), &challhash); mpi_parse (c, (struct ec_mpi *)&challhash); gcry_mpi_mod (c, c, ec_n); gcry_mpi_mulm (r, c, x, ec_n); gcry_mpi_addm (r, r, z, ec_n); gcry_mpi_release (c); gcry_mpi_release (z); } /** * smc_zkp_2dle_check \todo * * @param v TODO * @param w TODO * @param g1 TODO * @param g2 TODO * @param a TODO * @param b TODO * @param r TODO * @return TODO */ int smc_zkp_2dle_check (const gcry_mpi_point_t v, const gcry_mpi_point_t w, const gcry_mpi_point_t g1, const gcry_mpi_point_t g2, const gcry_mpi_point_t a, const gcry_mpi_point_t b, const gcry_mpi_t r) { int ret; struct zkp_challenge_2dle challenge; struct brandt_hash_code challhash; gcry_mpi_t c = gcry_mpi_new (0); gcry_mpi_point_t left = gcry_mpi_point_new (0); gcry_mpi_point_t right = gcry_mpi_point_new (0); /* compute challenge c */ ec_point_serialize (&challenge.g1, g1); ec_point_serialize (&challenge.g2, g2); ec_point_serialize (&challenge.v, v); ec_point_serialize (&challenge.w, w); ec_point_serialize (&challenge.a, a); ec_point_serialize (&challenge.b, b); brandt_hash (&challenge, sizeof (struct zkp_challenge_dl), &challhash); mpi_parse (c, (struct ec_mpi *)&challhash); gcry_mpi_mod (c, c, ec_n); gcry_mpi_ec_mul (left, r, g1, ec_ctx); gcry_mpi_ec_mul (right, c, v, ec_ctx); gcry_mpi_ec_add (right, a, right, ec_ctx); ret = ec_point_cmp (left, right); gcry_mpi_ec_mul (left, r, g2, ec_ctx); gcry_mpi_ec_mul (right, c, w, ec_ctx); gcry_mpi_ec_add (right, b, right, ec_ctx); ret |= ec_point_cmp (left, right); gcry_mpi_release (c); gcry_mpi_point_release (left); gcry_mpi_point_release (right); return ret; } /** * smc_zkp_0og \todo * * @param alpha TODO * @param m TODO * @param y TODO * @param beta TODO * @param a1 TODO * @param a2 TODO * @param b1 TODO * @param b2 TODO * @param d1 TODO * @param d2 TODO * @param r1 TODO * @param r2 TODO */ void smc_zkp_0og (gcry_mpi_point_t alpha, const gcry_mpi_point_t m, const gcry_mpi_point_t y, gcry_mpi_point_t beta, gcry_mpi_point_t a1, gcry_mpi_point_t a2, gcry_mpi_point_t b1, gcry_mpi_point_t b2, gcry_mpi_t d1, gcry_mpi_t d2, gcry_mpi_t r1, gcry_mpi_t r2) { struct zkp_challenge_0og challenge; struct brandt_hash_code challhash; gcry_mpi_t c = gcry_mpi_new (0); gcry_mpi_t r = gcry_mpi_new (0); gcry_mpi_t w = gcry_mpi_new (0); int eq0 = !ec_point_cmp (m, ec_zero); int eqg = !ec_point_cmp (m, ec_gen); if (!(eq0 ^ eqg)) eprintf ("zero knowledge proof: m is neither 0 nor g"); /* beta = r*g */ ec_keypair_create (beta, r); gcry_mpi_mod (r, r, ec_n); /* alpha = m + r*y */ gcry_mpi_ec_mul (alpha, r, y, ec_ctx); gcry_mpi_ec_add (alpha, m, alpha, ec_ctx); if (eq0) { /* m == 0 */ ec_keypair_create_base (a1, d1, beta); gcry_mpi_mod (d1, d1, ec_n); ec_keypair_create_base (b1, r1, y); gcry_mpi_mod (r1, r1, ec_n); /* a1 = r1*g + d1*beta */ gcry_mpi_ec_mul (a2, r1, ec_gen, ec_ctx); gcry_mpi_ec_add (a1, a2, a1, ec_ctx); /* b1 = r1*y + d1*(alpha-g) */ gcry_mpi_ec_sub (b2, alpha, ec_gen, ec_ctx); gcry_mpi_ec_mul (a2, d1, b2, ec_ctx); gcry_mpi_ec_add (b1, b1, a2, ec_ctx); /* a2 = w * g */ ec_keypair_create_base (a2, w, ec_gen); gcry_mpi_mod (w, w, ec_n); /* b2 = w * y */ gcry_mpi_ec_mul (b2, w, y, ec_ctx); } else { /* m == g */ ec_keypair_create_base (a2, d2, beta); gcry_mpi_mod (d2, d2, ec_n); ec_keypair_create_base (b2, r2, y); gcry_mpi_mod (r2, r2, ec_n); /* a2 = r2*g + d2*beta */ gcry_mpi_ec_mul (a1, r2, ec_gen, ec_ctx); gcry_mpi_ec_add (a2, a1, a2, ec_ctx); /* b2 = r2*y + d2*(alpha-0) */ /* useless subtraction to have same amount of operations as in m == 0 */ gcry_mpi_ec_sub (b1, alpha, ec_zero, ec_ctx); gcry_mpi_ec_mul (a1, d2, b1, ec_ctx); gcry_mpi_ec_add (b2, b2, a1, ec_ctx); /* a1 = w * g */ ec_keypair_create_base (a1, w, ec_gen); gcry_mpi_mod (w, w, ec_n); /* b1 = w * y */ gcry_mpi_ec_mul (b1, w, y, ec_ctx); } /* compute challenge c */ ec_point_serialize (&challenge.g, ec_gen); ec_point_serialize (&challenge.alpha, alpha); ec_point_serialize (&challenge.beta, beta); ec_point_serialize (&challenge.a1, a1); ec_point_serialize (&challenge.a2, a2); ec_point_serialize (&challenge.b1, b1); ec_point_serialize (&challenge.b2, b2); brandt_hash (&challenge, sizeof (struct zkp_challenge_dl), &challhash); mpi_parse (c, (struct ec_mpi *)&challhash); gcry_mpi_mod (c, c, ec_n); if (eq0) { /* m == 0 */ /* d2 = c - d1 */ gcry_mpi_subm (d2, c, d1, ec_n); /* r2 = w - r*d2 */ gcry_mpi_mulm (r2, r, d2, ec_n); gcry_mpi_subm (r2, w, r2, ec_n); } else { /* m == g */ /* d1 = c - d2 */ gcry_mpi_subm (d1, c, d2, ec_n); /* r1 = w - r*d1 */ gcry_mpi_mulm (r1, r, d1, ec_n); gcry_mpi_subm (r1, w, r1, ec_n); } gcry_mpi_release (c); gcry_mpi_release (r); gcry_mpi_release (w); } /** * smc_zkp_0og_check \todo * * @param alpha TODO * @param y TODO * @param beta TODO * @param a1 TODO * @param a2 TODO * @param b1 TODO * @param b2 TODO * @param d1 TODO * @param d2 TODO * @param r1 TODO * @param r2 TODO * @return TODO */ int smc_zkp_0og_check (const gcry_mpi_point_t alpha, const gcry_mpi_point_t y, const gcry_mpi_point_t beta, const gcry_mpi_point_t a1, const gcry_mpi_point_t a2, const gcry_mpi_point_t b1, const gcry_mpi_point_t b2, const gcry_mpi_t d1, const gcry_mpi_t d2, const gcry_mpi_t r1, const gcry_mpi_t r2) { int ret; struct zkp_challenge_0og challenge; struct brandt_hash_code challhash; gcry_mpi_t c = gcry_mpi_new (0); gcry_mpi_t sum = gcry_mpi_new (0); gcry_mpi_point_t right = gcry_mpi_point_new (0); gcry_mpi_point_t tmp = gcry_mpi_point_new (0); /* compute challenge c */ ec_point_serialize (&challenge.g, ec_gen); ec_point_serialize (&challenge.alpha, alpha); ec_point_serialize (&challenge.beta, beta); ec_point_serialize (&challenge.a1, a1); ec_point_serialize (&challenge.a2, a2); ec_point_serialize (&challenge.b1, b1); ec_point_serialize (&challenge.b2, b2); brandt_hash (&challenge, sizeof (struct zkp_challenge_dl), &challhash); mpi_parse (c, (struct ec_mpi *)&challhash); gcry_mpi_mod (c, c, ec_n); /* c == d1 + d2 */ gcry_mpi_addm (sum, d1, d2, ec_n); ret = gcry_mpi_cmp (c, sum); /* a1 == r1*g + d1*beta */ gcry_mpi_ec_mul (tmp, r1, ec_gen, ec_ctx); gcry_mpi_ec_mul (right, d1, beta, ec_ctx); gcry_mpi_ec_add (right, tmp, right, ec_ctx); ret |= ec_point_cmp (a1, right) << 1; /* b1 == r1*y + d1*(alpha-g) */ gcry_mpi_ec_sub (right, alpha, ec_gen, ec_ctx); gcry_mpi_ec_mul (tmp, d1, right, ec_ctx); gcry_mpi_ec_mul (right, r1, y, ec_ctx); gcry_mpi_ec_add (right, right, tmp, ec_ctx); ret |= ec_point_cmp (b1, right) << 2; /* a2 == r2*g + d2*beta */ gcry_mpi_ec_mul (tmp, d2, beta, ec_ctx); gcry_mpi_ec_mul (right, r2, ec_gen, ec_ctx); gcry_mpi_ec_add (right, right, tmp, ec_ctx); ret |= ec_point_cmp (a2, right) << 3; /* b2 == r2*y + d2*alpha */ gcry_mpi_ec_mul (tmp, d2, alpha, ec_ctx); gcry_mpi_ec_mul (right, r2, y, ec_ctx); gcry_mpi_ec_add (right, right, tmp, ec_ctx); ret |= ec_point_cmp (b2, right) << 4; gcry_mpi_release (c); gcry_mpi_release (sum); gcry_mpi_point_release (right); gcry_mpi_point_release (tmp); if (ret) weprintf ("ret: 0x%x", ret); return ret; } /* --- unused stuff, might become useful later --- */ ///** // * Clear memory that was used to store a private key. // * // * @param skey the key // */ //void //brandt_ec_key_clear (gcry_mpi_t skey) //{ // gcry_mpi_randomize (skey, 256, GCRY_WEAK_RANDOM); // gcry_mpi_release (skey); //} ///** // * Generate a random value mod n. // * // * @param edc ECC context // * @return random value mod n. // */ //gcry_mpi_t //GNUNET_CRYPTO_ecc_random_mod_n (struct GNUNET_CRYPTO_EccDlogContext *edc) //{ // gcry_mpi_t n; // unsigned int highbit; // gcry_mpi_t r; // // n = gcry_mpi_ec_get_mpi ("n", edc->ctx, 1); // // /* check public key for number of bits, bail out if key is all zeros */ // highbit = 256; /* Curve25519 */ // while ( (! gcry_mpi_test_bit (n, highbit)) && // (0 != highbit) ) // highbit--; // GNUNET_assert (0 != highbit); // /* generate fact < n (without bias) */ // GNUNET_assert (NULL != (r = gcry_mpi_new (0))); // do { // gcry_mpi_randomize (r, // highbit + 1, // GCRY_STRONG_RANDOM); // } // while (gcry_mpi_cmp (r, n) >= 0); // gcry_mpi_release (n); // return r; //}