/* This file is part of libbrandt.
* Copyright (C) 2016 GNUnet e.V.
*
* libbrandt is free software: you can redistribute it and/or modify it under
* the terms of the GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option) any later
* version.
*
* libbrandt is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along with
* libbrandt. If not, see .
*/
/**
* @file crypto.c
* @brief Implementation of the crypto primitives.
*/
#include
#include "crypto.h"
#include "util.h"
#define CURVE "Ed25519"
struct brandt_ec_skey {
unsigned char d[256 / 8];
};
struct brandt_ec_pkey {
unsigned char q_y[256 / 8];
};
gcry_mpi_point_t ec_gen;
gcry_ctx_t ec_ctx;
void
brandt_crypto_init ()
{
gcry_error_t rc;
rc = gcry_mpi_ec_new (&ec_ctx, NULL, CURVE);
brandt_assert_gpgerr (rc);
ec_gen = gcry_mpi_ec_get_point ("g", ec_ctx, 0);
brandt_assert (NULL != ec_gen);
}
/* --- RANDOM --- */
void
brandt_rand_poll ()
{
static unsigned char rand_amount = 255;
if (!(rand_amount--))
gcry_fast_random_poll ();
}
/* --- HASHING --- */
/**
* Hash block of given size.
*
* @param block the data to #brandt_hash, length is given as a second argument
* @param size the length of the data to #brandt_hash in @a block
* @param ret pointer to where to write the hashcode
*/
void
brandt_hash (const void *block, size_t size, struct brandt_hash_code *ret)
{
gcry_md_hash_buffer (GCRY_MD_SHA512, ret, block, size);
}
/* --- MPI --- */
/**
* If target != size, move @a target bytes to the end of the size-sized
* buffer and zero out the first @a target - @a size bytes.
*
* @param buf original buffer
* @param size number of bytes in @a buf
* @param target target size of the buffer
*/
static void
adjust (void *buf, size_t size, size_t target)
{
char *p = buf;
if (size < target)
{
memmove (&p[target - size], buf, size);
memset (buf, 0, target - size);
}
}
/**
* Output the given MPI value to the given buffer in
* network byte order.
* The MPI @a val may not be negative.
*
* @param buf where to output to
* @param size number of bytes in @a buf
* @param val value to write to @a buf
*/
void
brandt_mpi_print_unsigned (void *buf, size_t size, gcry_mpi_t val)
{
size_t rsize;
gcry_error_t rc;
if (gcry_mpi_get_flag (val, GCRYMPI_FLAG_OPAQUE))
{
/* Store opaque MPIs left aligned into the buffer. */
unsigned int nbits;
const void *p;
p = gcry_mpi_get_opaque (val, &nbits);
brandt_assert (NULL != p);
rsize = (nbits + 7) / 8;
if (rsize > size)
rsize = size;
memcpy (buf, p, rsize);
if (rsize < size)
memset (((char *)buf) + rsize, 0, size - rsize);
}
else
{
/* Store regular MPIs as unsigned integers right aligned into the buffer. */
rsize = size;
rc = gcry_mpi_print (GCRYMPI_FMT_USG, buf, rsize, &rsize, val);
brandt_assert_gpgerr (rc);
adjust (buf, rsize, size);
}
}
/**
* Convert data buffer into MPI value.
* The buffer is interpreted as network
* byte order, unsigned integer.
*
* @param result where to store MPI value (allocated)
* @param data raw data (GCRYMPI_FMT_USG)
* @param size number of bytes in @a data
*/
void
brandt_mpi_scan_unsigned (gcry_mpi_t *result, const void *data, size_t size)
{
gcry_error_t rc;
rc = gcry_mpi_scan (result, GCRYMPI_FMT_USG, data, size, &size);
brandt_assert_gpgerr (rc);
}
/*
gcry_mpi_point_t
deserialize_point(const struct brandt_point* data, const int len)
{
gcry_sexp_t s;
gcry_ctx_t ctx;
gcry_mpi_point_t ret;
gcry_error_t rc;
rc = gcry_sexp_build(&s, NULL, "(public-key(ecc(curve " CURVE ")(q %b)))",
len, data);
brandt_assert_gpgerr(rc);
rc = gcry_mpi_ec_new(&ctx, s, NULL);
brandt_assert_gpgerr(rc);
gcry_sexp_release(s);
ret = gcry_mpi_ec_get_point("q", ctx, 0);
brandt_assert(ret);
gcry_ctx_release(ctx);
return ret;
}
*/
/* --- EC --- */
/**
* Extract values from an S-expression.
*
* @param array where to store the result(s)
* @param sexp S-expression to parse
* @param topname top-level name in the S-expression that is of interest
* @param elems names of the elements to extract
* @return 0 on success
*/
static int
key_from_sexp (gcry_mpi_t *array, gcry_sexp_t sexp, const char *topname,
const char *elems)
{
gcry_sexp_t list;
gcry_sexp_t l2;
const char *s;
unsigned int i;
unsigned int idx;
list = gcry_sexp_find_token (sexp, topname, 0);
if (!list)
return 1;
l2 = gcry_sexp_cadr (list);
gcry_sexp_release (list);
list = l2;
if (!list)
return 2;
idx = 0;
for (s = elems; *s; s++, idx++)
{
l2 = gcry_sexp_find_token (list, s, 1);
if (!l2)
{
for (i = 0; i < idx; i++)
{
gcry_free (array[i]);
array[i] = NULL;
}
gcry_sexp_release (list);
return 3; /* required parameter not found */
}
array[idx] = gcry_sexp_nth_mpi (l2, 1, GCRYMPI_FMT_USG);
gcry_sexp_release (l2);
if (!array[idx])
{
for (i = 0; i < idx; i++)
{
gcry_free (array[i]);
array[i] = NULL;
}
gcry_sexp_release (list);
return 4; /* required parameter is invalid */
}
}
gcry_sexp_release (list);
return 0;
}
void
brandt_ec_skey_create (gcry_mpi_t* skey)
{
gcry_sexp_t s_keyparam;
gcry_sexp_t priv_sexp;
gcry_error_t rc;
rc = gcry_sexp_build (&s_keyparam, NULL, "(genkey(ecc(curve \"" CURVE "\")"
"(flags)))");
brandt_assert_gpgerr (rc);
rc = gcry_pk_genkey (&priv_sexp, s_keyparam);
brandt_assert_gpgerr (rc);
gcry_sexp_release (s_keyparam);
rc = key_from_sexp (skey, priv_sexp, "private-key", "d");
brandt_assert_gpgerr (rc);
gcry_sexp_release (priv_sexp);
}
void
brandt_ec_pkey_compute (gcry_mpi_point_t* pkey, const gcry_mpi_t skey)
{
}
void
brandt_ec_keypair_create (gcry_mpi_point_t* pkey, gcry_mpi_t* skey)
{
gcry_ctx_t ctx;
gcry_sexp_t s_keyparam;
gcry_sexp_t priv_sexp;
gcry_error_t rc;
rc = gcry_sexp_build (&s_keyparam, NULL, "(genkey(ecc(curve \"" CURVE "\")"
"(flags)))");
brandt_assert_gpgerr (rc);
rc = gcry_pk_genkey (&priv_sexp, s_keyparam);
brandt_assert_gpgerr (rc);
gcry_sexp_release (s_keyparam);
rc = key_from_sexp (skey, priv_sexp, "private-key", "d");
brandt_assert_gpgerr (rc);
rc = gcry_mpi_ec_new (&ctx, priv_sexp, NULL);
brandt_assert_gpgerr (rc);
gcry_sexp_release (priv_sexp);
*pkey = gcry_mpi_ec_get_point("q", ctx, 0);
brandt_assert (NULL != *pkey);
gcry_ctx_release (ctx);
}
void
brandt_ec_keypair_create_base (gcry_mpi_point_t* pkey, gcry_mpi_t* skey, const gcry_mpi_point_t base)
{
brandt_ec_skey_create(skey);
brandt_assert(*skey);
*pkey = gcry_mpi_point_new(0);
brandt_assert(*pkey);
gcry_mpi_ec_mul(*pkey, *skey, base, ec_ctx);
}
int
brandt_ec_point_cmp (const gcry_mpi_point_t a, const gcry_mpi_point_t b)
{
int ret = 1;
gcry_mpi_t ax = gcry_mpi_new(0);
gcry_mpi_t bx = gcry_mpi_new(0);
gcry_mpi_t ay = gcry_mpi_new(0);
gcry_mpi_t by = gcry_mpi_new(0);
brandt_assert (a && b);
if (!ax || !bx || !ay || !by)
{
weprintf("could not init point in point_cmp");
return 1;
}
if (!gcry_mpi_ec_get_affine(ax, ay, a, ec_ctx) && !gcry_mpi_ec_get_affine(bx, by, b, ec_ctx))
{
ret = gcry_mpi_cmp(ax, bx) || gcry_mpi_cmp(ay, by);
}
gcry_mpi_release(ax);
gcry_mpi_release(bx);
gcry_mpi_release(ay);
gcry_mpi_release(by);
return ret;
}
/**
* Convert the given private key from the network format to the
* S-expression that can be used by libgcrypt.
*
* @param priv private key to decode
* @return NULL on error
*/
static gcry_sexp_t
decode_private_ecdhe_key (const struct brandt_ec_skey *priv)
{
gcry_sexp_t result;
gcry_error_t rc;
rc = gcry_sexp_build (&result, NULL,
"(private-key(ecc(curve \"" CURVE "\")"
"(d %b)))",
(int)sizeof (priv->d), priv->d);
brandt_assert_gpgerr (rc);
return result;
}
/**
* Extract the public key for the given private key.
*
* @param priv the private key
* @param pub where to write the public key
*/
void
brandt_ecdhe_key_get_public (const struct brandt_ec_skey *priv,
struct brandt_ec_pkey *pub)
{
gcry_sexp_t sexp;
gcry_ctx_t ctx;
gcry_mpi_t q;
gcry_error_t rc;
sexp = decode_private_ecdhe_key (priv);
brandt_assert (NULL != sexp);
rc = gcry_mpi_ec_new (&ctx, sexp, NULL);
brandt_assert_gpgerr (rc);
gcry_sexp_release (sexp);
q = gcry_mpi_ec_get_mpi ("q@eddsa", ctx, 0);
brandt_assert (NULL != q);
brandt_mpi_print_unsigned (pub->q_y, sizeof (pub->q_y), q);
gcry_mpi_release (q);
gcry_ctx_release (ctx);
}
/**
* Derive key material from a public and a private ECDHE key.
*
* @param priv private key to use for the ECDH (x)
* @param pub public key to use for the ECDH (yG)
* @param key_material where to write the key material (xyG)
* @return 0 on error, 1 on success
*/
int
brandt_ecdhe (const struct brandt_ec_skey *priv,
const struct brandt_ec_pkey *pub,
struct brandt_hash_code *key_material)
{
gcry_error_t rc;
int rc2;
gcry_mpi_point_t result;
gcry_mpi_point_t q;
gcry_mpi_t d;
gcry_ctx_t ctx;
gcry_sexp_t pub_sexpr;
gcry_mpi_t result_x;
unsigned char xbuf[256 / 8];
size_t rsize;
/* first, extract the q = dP value from the public key */
if (0 != gcry_sexp_build (&pub_sexpr, NULL,
"(public-key(ecc(curve " CURVE ")(q %b)))",
(int)sizeof (pub->q_y), pub->q_y))
return 0;
rc = gcry_mpi_ec_new (&ctx, pub_sexpr, NULL);
brandt_assert_gpgerr (rc);
gcry_sexp_release (pub_sexpr);
q = gcry_mpi_ec_get_point ("q", ctx, 0);
/* second, extract the d value from our private key */
brandt_mpi_scan_unsigned (&d, priv->d, sizeof (priv->d));
/* then call the 'multiply' function, to compute the product */
result = gcry_mpi_point_new (0);
gcry_mpi_ec_mul (result, d, q, ctx);
gcry_mpi_point_release (q);
gcry_mpi_release (d);
/* finally, convert point to string for hashing */
result_x = gcry_mpi_new (256);
rc = gcry_mpi_ec_get_affine (result_x, NULL, result, ctx);
brandt_assert (0 == rc);
gcry_mpi_point_release (result);
gcry_ctx_release (ctx);
rsize = sizeof (xbuf);
rc2 = gcry_mpi_get_flag (result_x, GCRYMPI_FLAG_OPAQUE);
brandt_assert (0 == rc2);
/* result_x can be negative here, so we do not use 'brandt_mpi_print_unsigned'
* as that does not include the sign bit; x should be a 255-bit
* value, so with the sign it should fit snugly into the 256-bit
* xbuf */
rc = gcry_mpi_print (GCRYMPI_FMT_STD, xbuf, rsize, &rsize, result_x);
brandt_assert_gpgerr (rc);
brandt_hash (xbuf, rsize, key_material);
gcry_mpi_release (result_x);
return 1;
}
/**
* Clear memory that was used to store a private key.
*
* @param skey location of the key
*/
void
brandt_ec_key_clear (struct brandt_ec_skey *skey)
{
memset (skey, 0, sizeof (struct brandt_ec_skey));
}
/**
* Generate a random value mod n.
*
* @param edc ECC context
* @return random value mod n.
*/
//gcry_mpi_t
//GNUNET_CRYPTO_ecc_random_mod_n (struct GNUNET_CRYPTO_EccDlogContext *edc)
//{
// gcry_mpi_t n;
// unsigned int highbit;
// gcry_mpi_t r;
//
// n = gcry_mpi_ec_get_mpi ("n", edc->ctx, 1);
//
// /* check public key for number of bits, bail out if key is all zeros */
// highbit = 256; /* Curve25519 */
// while ( (! gcry_mpi_test_bit (n, highbit)) &&
// (0 != highbit) )
// highbit--;
// GNUNET_assert (0 != highbit);
// /* generate fact < n (without bias) */
// GNUNET_assert (NULL != (r = gcry_mpi_new (0)));
// do {
// gcry_mpi_randomize (r,
// highbit + 1,
// GCRY_STRONG_RANDOM);
// }
// while (gcry_mpi_cmp (r, n) >= 0);
// gcry_mpi_release (n);
// return r;
//}