add first two ZKPs in EC scheme to math.tex
This commit is contained in:
parent
9e773e5437
commit
ccce00377c
@ -2,6 +2,37 @@
|
|||||||
\usepackage[a4paper, margin=2cm]{geometry}
|
\usepackage[a4paper, margin=2cm]{geometry}
|
||||||
\usepackage{amsmath}
|
\usepackage{amsmath}
|
||||||
\begin{document}
|
\begin{document}
|
||||||
|
\section{first price auction with tie breaking and private outcome (EC-Version)}
|
||||||
|
\subsection{Zero Knowledge Proofs}
|
||||||
|
\subsubsection{Proof of Knowledge of a EC DL}
|
||||||
|
|
||||||
|
Alice and Bob know $v$ and $g$ with $|g| = n$, but only Alice knows $x$, so that $v = xg$.
|
||||||
|
|
||||||
|
\begin{enumerate}
|
||||||
|
\item Alice chooses $z$ at random and calculates $a = zg$.
|
||||||
|
\item Alice computes $c = HASH(g,v,a)$ mod n.
|
||||||
|
\item Alice sends $r = (z + cx)$ mod n and $a$ to Bob.
|
||||||
|
\item Bob checks that $rg = a + cv$.
|
||||||
|
\end{enumerate}
|
||||||
|
|
||||||
|
\subsection{Proof of equality of tow EC DL}
|
||||||
|
|
||||||
|
Alice and Bob know $v$, $w$, $g_1$ and $g_2$, but only Alice knows $x$, so that
|
||||||
|
$v = xg_1$ and $w = xg_2$.
|
||||||
|
|
||||||
|
\begin{enumerate}
|
||||||
|
\item Alice chooses $z$ at random and calculates $a = zg_1$ and $b = zg_2$.
|
||||||
|
\item Alice computes $c = HASH(g,v,w,a,b)$ mod n.
|
||||||
|
\item Alice sends $r = (z + cx)$ mod n, $a$ and $b$ to Bob.
|
||||||
|
\item Bob checks that $rg_1 = a + cv$ and $rg_2 = b + cw$.
|
||||||
|
\end{enumerate}
|
||||||
|
|
||||||
|
\subsection{Proof that an encrypted value is one out of two values}
|
||||||
|
|
||||||
|
Alice proves that an El Gamal encrypted value $(\alpha, \beta) = (m + ry, rg)$
|
||||||
|
either decrypts to $0$ or to a fixed value $z$ without revealing which is the
|
||||||
|
case, in other words, it is shown that $m \epsilon \{0, z\}$.
|
||||||
|
|
||||||
\section{first price auction with tie breaking and private outcome}
|
\section{first price auction with tie breaking and private outcome}
|
||||||
\begin{align}
|
\begin{align}
|
||||||
v_{aj} & = \frac{\prod_{i=1}^n \gamma_{aj}^{\times i}}{\prod_{i=1}^n \varphi_{aj}^{\times i}} \\[2.0ex]
|
v_{aj} & = \frac{\prod_{i=1}^n \gamma_{aj}^{\times i}}{\prod_{i=1}^n \varphi_{aj}^{\times i}} \\[2.0ex]
|
||||||
|
Loading…
Reference in New Issue
Block a user