modify fp_priv gp script for eval (old)

This commit is contained in:
Markus Teich 2017-02-14 13:36:22 +01:00
parent f4b71550bb
commit 1b29de8ebe

View File

@ -6,11 +6,11 @@
\\\\\\\\\\\\ \\\\\\\\\\\\
\\ amount of bidders \\ amount of bidders
n = 3 \\n = 3
\\ amount of possible prices \\ amount of possible prices
k = 2^2 \\k = 2^2
\\ randomize bids (change to something static, if you like) \\ randomize bids (change to something static, if you like)
bid = vector(n,i,random(k)+1) \\bid = vector(n,i,random(k)+1)
\\bid = vector(n,i,n-i+1) \\ first bidder wins \\bid = vector(n,i,n-i+1) \\ first bidder wins
\\bid = vector(n,i,i) \\ last bidder wins \\bid = vector(n,i,i) \\ last bidder wins
\\bid = vector(n,i,(i+1)%2) \\ second bidder wins (with ties) \\bid = vector(n,i,(i+1)%2) \\ second bidder wins (with ties)
@ -19,67 +19,68 @@ bid = vector(n,i,random(k)+1)
\\ SETUP \\ SETUP
\\\\\\\\\\\\ \\\\\\\\\\\\
read(group) read(group);
read(zkp) read(zkp);
fp_priv(bids:vec, k:int) =
{
local(n:int = length(bids));
\\\\\\\\\\\\ \\\\\\\\\\\\
\\ PROLOG \\ PROLOG
\\\\\\\\\\\\ \\\\\\\\\\\\
\\ private keys of agents \\ private keys of agents
x = vector(n,i,random(q)) x = vector(n,i,random(q));
\\ first index level = owning agent id (additive share) \\ first index level = owning agent id (additive share)
\\ second index level = agent id, price id \\ second index level = agent id, price id
m = vector(n,i,matrix(n,k,a,b,random(q))) m = vector(n,i,matrix(n,k,a,b,random(q)));
\\ zkp \\ zkp
proofs1 = vector(n,i,zkp1_proof(G, x[i])) proofs1 = vector(n,i,zkp1_proof(G, x[i]));
\\ public keyshares of agents \\ public keyshares of agents
yshares = vector(n,i,proofs1[i][4]) yshares = vector(n,i,proofs1[i][4]);
\\yshares = vector(n,i,G^x[i]) \\yshares = vector(n,i,G^x[i])
\\ for performance evaluations we need to check the proofs for every bidder \\ for performance evaluations we need to check the proofs for every bidder
\\ i := checking bidder (0 == seller) \\ i := checking bidder (0 == seller)
\\ h := bidder to check \\ h := bidder to check
{
for(i=0,n, for(i=0,n,
for(h=1,n, for(h=1,n,
if(1 != zkp1_check(proofs1[h]), if(1 != zkp1_check(proofs1[h]),
error("zkp1 failure in round0") error("zkp1 failure in round0")
) )
) )
) );
}
\\ shared public key \\ shared public key
y = prod(X=1,n,yshares[X]) y = prod(X=1,n,yshares[X]);
\\\\\\\\\\\\ \\\\\\\\\\\\
\\ ROUND1 \\ ROUND1
\\\\\\\\\\\\ \\\\\\\\\\\\
\\ bid matrix \\ bid matrix
b = matrix(n,k,i,j,G^(bid[i]==j)) b = matrix(n,k,i,j,G^(bids[i]==j));
\\ zkp \\ zkp
proofs3 = matrix(n,k,i,j, zkp3_proof(G,y,G^(bid[i]==j))) proofs3 = matrix(n,k,i,j, zkp3_proof(G,y,G^(bids[i]==j)));
\\ index = owning agent id, price id \\ index = owning agent id, price id
r = matrix(n,k,i,j,proofs3[i,j][13]) r = matrix(n,k,i,j,proofs3[i,j][13]);
\\r = matrix(n,k,i,j,random(q)) \\r = matrix(n,k,i,j,random(q))
\\ encrypted bids \\ encrypted bids
Alpha = matrix(n,k,i,j, proofs3[i,j][3]) Alpha = matrix(n,k,i,j, proofs3[i,j][3]);
Beta = matrix(n,k,i,j, proofs3[i,j][4]) Beta = matrix(n,k,i,j, proofs3[i,j][4]);
\\Alpha = matrix(n,k,i,j, b[i,j]*y^r[i,j]) \\Alpha = matrix(n,k,i,j, b[i,j]*y^r[i,j])
\\Beta = matrix(n,k,i,j, G^r[i,j]) \\Beta = matrix(n,k,i,j, G^r[i,j])
proofs2 = vector(n,i, zkp2_proof(y,G,sum(j=1,k, r[i,j]))) proofs2 = vector(n,i, zkp2_proof(y,G,sum(j=1,k, r[i,j])));
\\ i := checking bidder (0 == seller) \\ i := checking bidder (0 == seller)
\\ h := bidder to check \\ h := bidder to check
\\ j := price index to check \\ j := price index to check
{
for(i=0,n, for(i=0,n,
for(h=1,n, for(h=1,n,
for(j=1,k, for(j=1,k,
@ -97,8 +98,7 @@ for(i=0,n,
error("zkp2 failure in round1") error("zkp2 failure in round1")
) )
) )
) );
}
\\\\\\\\\\\\ \\\\\\\\\\\\
\\ ROUND2 \\ ROUND2
@ -107,20 +107,19 @@ for(i=0,n,
\\ multiplicative shares \\ multiplicative shares
\\ first index level = owning agent id (multiplicative share) \\ first index level = owning agent id (multiplicative share)
\\ second index level = agent id, price id \\ second index level = agent id, price id
Gamma = vector(n,a,matrix(n,k,i,j, prod(h=1,n,prod(d=j+1,k,Alpha[h,d])) * prod(d=1,j-1,Alpha[i,d]) * prod(h=1,i-1,Alpha[h,j]) )) Gamma = vector(n,a,matrix(n,k,i,j, prod(h=1,n,prod(d=j+1,k,Alpha[h,d])) * prod(d=1,j-1,Alpha[i,d]) * prod(h=1,i-1,Alpha[h,j]) ));
Delta = vector(n,a,matrix(n,k,i,j, prod(h=1,n,prod(d=j+1,k, Beta[h,d])) * prod(d=1,j-1, Beta[i,d]) * prod(h=1,i-1, Beta[h,j]) )) Delta = vector(n,a,matrix(n,k,i,j, prod(h=1,n,prod(d=j+1,k, Beta[h,d])) * prod(d=1,j-1, Beta[i,d]) * prod(h=1,i-1, Beta[h,j]) ));
\\Gamma = vector(n,a,matrix(n,k,i,j, ( prod(h=1,n,prod(d=j+1,k,Alpha[h,d])) * prod(d=1,j-1,Alpha[i,d]) * prod(h=1,i-1,Alpha[h,j]) )^m[a][i,j] )) \\Gamma = vector(n,a,matrix(n,k,i,j, ( prod(h=1,n,prod(d=j+1,k,Alpha[h,d])) * prod(d=1,j-1,Alpha[i,d]) * prod(h=1,i-1,Alpha[h,j]) )^m[a][i,j] ))
\\Delta = vector(n,a,matrix(n,k,i,j, ( prod(h=1,n,prod(d=j+1,k, Beta[h,d])) * prod(d=1,j-1, Beta[i,d]) * prod(h=1,i-1, Beta[h,j]) )^m[a][i,j] )) \\Delta = vector(n,a,matrix(n,k,i,j, ( prod(h=1,n,prod(d=j+1,k, Beta[h,d])) * prod(d=1,j-1, Beta[i,d]) * prod(h=1,i-1, Beta[h,j]) )^m[a][i,j] ))
\\ random masking and zkp \\ random masking and zkp
proofs2 = vector(n,a,matrix(n,k,i,j, zkp2_proof(Gamma[a][i,j], Delta[a][i,j], random(q)) )) proofs2 = vector(n,a,matrix(n,k,i,j, zkp2_proof(Gamma[a][i,j], Delta[a][i,j], random(q)) ));
\\ for performance evaluations we need to check the proofs for every bidder \\ for performance evaluations we need to check the proofs for every bidder
\\ i := checking bidder (0 == seller) \\ i := checking bidder (0 == seller)
\\ h := bidder to check \\ h := bidder to check
\\ t := target bidder (creator of the proof) \\ t := target bidder (creator of the proof)
\\ j := price \\ j := price
{
for(t=1,n, for(t=1,n,
for(h=1,n, for(h=1,n,
for(j=1,k, for(j=1,k,
@ -134,8 +133,7 @@ for(t=1,n,
Delta[t][h,j] = proofs2[t][h,j][7]; Delta[t][h,j] = proofs2[t][h,j][7];
) )
) )
) );
}
\\\\\\\\\\\\ \\\\\\\\\\\\
@ -145,17 +143,16 @@ for(t=1,n,
\\ multiplicative shares (decryption) \\ multiplicative shares (decryption)
\\ first index level = owning agent id (multiplicative share) \\ first index level = owning agent id (multiplicative share)
\\ second index level = agent id, price id \\ second index level = agent id, price id
Phi = vector(n,a,matrix(n,k,i,j, prod(h=1,n,Delta[h][i,j]) )) Phi = vector(n,a,matrix(n,k,i,j, prod(h=1,n,Delta[h][i,j]) ));
\\Phi = vector(n,a,matrix(n,k,i,j, prod(h=1,n,Delta[h][i,j])^x[a] )) \\Phi = vector(n,a,matrix(n,k,i,j, prod(h=1,n,Delta[h][i,j])^x[a] ))
proofs2 = vector(n,a,matrix(n,k,i,j, zkp2_proof(Phi[a][i,j], G, x[a]) )) proofs2 = vector(n,a,matrix(n,k,i,j, zkp2_proof(Phi[a][i,j], G, x[a]) ));
\\ for performance evaluations we need to check the proofs for every bidder \\ for performance evaluations we need to check the proofs for every bidder
\\ i := checking bidder (0 == seller) \\ i := checking bidder (0 == seller)
\\ h := bidder to check \\ h := bidder to check
\\ t := target bidder (creator of the proof) \\ t := target bidder (creator of the proof)
\\ j := price \\ j := price
{
for(t=1,n, for(t=1,n,
for(h=1,n, for(h=1,n,
for(j=1,k, for(j=1,k,
@ -168,8 +165,7 @@ for(t=1,n,
Phi[t][h,j] = proofs2[t][h,j][6]; Phi[t][h,j] = proofs2[t][h,j][6];
) )
) )
) );
}
\\\\\\\\\\\\ \\\\\\\\\\\\
@ -177,10 +173,16 @@ for(t=1,n,
\\\\\\\\\\\\ \\\\\\\\\\\\
\\ winner matrix \\ winner matrix
v = matrix(n,k,a,j, prod(i=1,n,Gamma[i][a,j]) / prod(i=1,n,Phi[i][a,j]) ) v = matrix(n,k,a,j, prod(i=1,n,Gamma[i][a,j]) / prod(i=1,n,Phi[i][a,j]) );
vi = lift(v) vi = lift(v);
print("bids are: ", bid) print("bids are: ", bids);
for(X=1,n, if(vecmin(vi[X,])==1, print("And the winner is ", X) )) for(X=1,n,
if(vecmin(vi[X,])==1,
print("And the winner is ", X)
)
);
}
; ;