From 18421619e8c76210909fa192fb50bb82ec0062cc Mon Sep 17 00:00:00 2001 From: Markus Teich Date: Sun, 19 Jun 2016 17:45:52 +0200 Subject: [PATCH] finish protocol transcription to Ed25519 --- tex-stuff/math.tex | 32 ++++++++++++++++++++++++++------ 1 file changed, 26 insertions(+), 6 deletions(-) diff --git a/tex-stuff/math.tex b/tex-stuff/math.tex index 7585cdc..b01febc 100644 --- a/tex-stuff/math.tex +++ b/tex-stuff/math.tex @@ -1,6 +1,7 @@ \documentclass{article} \usepackage[a4paper, margin=2cm]{geometry} \usepackage{amsmath} +\usepackage{amsfonts} \begin{document} \section{first price auction with tie breaking and private outcome (EC-Version)} \subsection{Zero Knowledge Proofs} @@ -58,36 +59,55 @@ Then regardless of the value of $m$: \subsection{Protocol} +Let $n$ be the number of participating bidders/agents in the protocol and $k$ be +the amount of possible valuations/prices for the sold good. Let $g$ be the +generator of Ed25519 and $q = ord(g)$ the order of it. $0$ is the neutral point +for addition on Ed25519. $a \in \left\{1,2,\dots,n\right\}$ is the index of the +agent executing the protocol, while $i, h \in \left\{1, 2, \dots, n\right\}$ are +other agent indizes. $j, b_a \in \left\{1,2,\dots,k\right\}$ with $b_a$ denoting +the price $p_{b_a}$ bidder $a$ is willing to pay. $\forall j: p_j < p_{j+1}$. + \subsubsection{Generate public key} \begin{enumerate} - \item Choose $x_a$ and $m_{ij}, r_{aj}$ for each $i$ and $j$ at random. - \item Publish $y_a=g^{x_a}$ along with a zero-knowledge proof of knowledge of $y_a$'s EC DL. - \item Compute $y=\sum_{i=1}^ny_i$. + \item Choose $x_{+a} \in \mathbb{Z}_q$ and $m_{ij}^{\times a}, r_{aj} \in \mathbb{Z}_q$ for each $i$ and $j$ at random. + \item Publish $y_{\times a}={x_{+a}}g$ along with a zero-knowledge proof of knowledge of $y_{\times a}$'s EC DL. + \item Compute $y=\sum_{i=1}^ny_{\times i}$. \end{enumerate} \subsubsection{Round 1: Encrypt bid} \begin{enumerate} \item Set $b_{aj}=\begin{cases}g & \mathrm{if}\quad j=b_a\\0 & \mathrm{else}\end{cases}$ and publish $\alpha_{aj}=b_{aj}+r_{aj}y$ and $\beta_{aj}=r_{aj}g$ for each j. + \item Prove that $\forall j:(\alpha_{aj}, \beta_{aj})$ decrypts to either $0$ or $g$. + \item Prove that $\forall j: ECDL_y\left(\left(\sum_{j=1}^k\alpha_{aj}\right) - g\right) = ECDL_g\left(\sum_{j=1}^k\beta_{aj}\right)$ \end{enumerate} \subsubsection{Round 2: Compute outcome} \begin{enumerate} - \item + \item Compute and publish for each $i$ and $j$: \\[2.0ex] + $\gamma_{ij}^{\times a} = m_{ij}^{+a}\displaystyle\left(\left(\sum_{h=1}^n\sum_{d=j+1}^k\alpha_{hd}\right)+\left(\sum_{d=1}^{j-1}\alpha_{id}\right)+\left(\sum_{h=1}^{i-1}\alpha_{hj}\right)\right)$ and \\[2.0ex] + $\delta_{ij}^{\times a} = m_{ij}^{+a}\displaystyle\left(\left(\sum_{h=1}^n\sum_{d=j+1}^k\beta_{hd}\right)+\left(\sum_{d=1}^{j-1}\beta_{id}\right)+\left(\sum_{h=1}^{i-1}\beta_{hj}\right)\right)$ \\[2.0ex] + with a proof of correctness. \end{enumerate} \subsubsection{Round 3: Decrypt outcome} \begin{enumerate} - \item + \item Send $\varphi_{ij}^{\times a} = + x_{+a}\left(\sum_{h=1}^n\delta_{ij}^{\times h}\right)$ for each $i$ and + $j$ with a proof of correctness (ECDL is known \textbf{and} equal to the + ECDL used for $y_{\times a}$) to the seller who publishes all + $\varphi_{ij}^{\times h}$ and the corresponding proofs of correctness for + each $i, j$ and $h \neq i$ after having received all of them. \end{enumerate} \subsubsection{Epilogue: Outcome determination} \begin{enumerate} - \item + \item Compute $v_{aj}=\sum_{i=1}^n\gamma_{aj}^{\times i} - \sum_{i=1}^n\varphi_{aj}^{\times i}$ for each $j$. + \item If $v_{aw} = 1$ for any $w$, then bidder $a$ is the winner of the auction. $p_w$ is the selling price. \end{enumerate}