libbrandt/mp_pub.c

539 lines
16 KiB
C
Raw Normal View History

/* This file is part of libbrandt.
* Copyright (C) 2016 GNUnet e.V.
*
* libbrandt is free software: you can redistribute it and/or modify it under
* the terms of the GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option) any later
* version.
*
* libbrandt is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along with
* libbrandt. If not, see <http://www.gnu.org/licenses/>.
*/
/**
* @file mp_pub.c
* @brief Implementation of the m+1st price public outcome algorithm.
* @author Markus Teich
*/
#include "platform.h"
#include <gcrypt.h>
#include "crypto.h"
#include "internals.h"
#include "util.h"
void
mp_pub_prep_outcome (struct BRANDT_Auction *ad)
{
gcry_mpi_t factor = gcry_mpi_new (256);
gcry_mpi_point_t subtr = gcry_mpi_point_new (0);
gcry_mpi_point_t tmpa = gcry_mpi_point_new (0);
gcry_mpi_point_t tmpb = gcry_mpi_point_new (0);
gcry_mpi_point_t *tlta1;
gcry_mpi_point_t *tltb1;
gcry_mpi_point_t **tlta2;
gcry_mpi_point_t **tltb2;
gcry_mpi_point_t **tlta3;
gcry_mpi_point_t **tltb3;
ad->gamma3 = smc_init3 (ad->n, 2, ad->k);
brandt_assert (ad->gamma3);
ad->delta3 = smc_init3 (ad->n, 2, ad->k);
brandt_assert (ad->delta3);
/* create temporary lookup tables with partial sums */
tlta1 = smc_init1 (ad->k);
tltb1 = smc_init1 (ad->k);
tlta2 = smc_init2 (ad->n, ad->k);
tltb2 = smc_init2 (ad->n, ad->k);
tlta3 = smc_init2 (ad->n, ad->k);
tltb3 = smc_init2 (ad->n, ad->k);
/* temporary lookup table for first summand (building ladder of bids) */
for (uint16_t i = 0; i < ad->n; i++)
{
smc_sums_partial (tlta3[i], ad->alpha[i], ad->k, 1, 1);
smc_sums_partial (tltb3[i], ad->beta[i], ad->k, 1, 1);
for (uint16_t j = 0; j < ad->k; j++)
{
gcry_mpi_ec_sub (tlta2[i][j],
tlta3[i][ad->k - 1],
tlta3[i][j],
ec_ctx);
gcry_mpi_ec_sub (tltb2[i][j],
tltb3[i][ad->k - 1],
tltb3[i][j],
ec_ctx);
}
brandt_assert (!ec_point_cmp (ec_zero, tlta2[i][ad->k - 1]));
brandt_assert (!ec_point_cmp (ec_zero, tltb2[i][ad->k - 1]));
}
for (uint16_t j = 0; j < ad->k; j++)
{
/* 2L - 2I */
smc_sum (tmpa, &tlta2[0][j], ad->n, ad->k);
smc_sum (tmpb, &tltb2[0][j], ad->n, ad->k);
gcry_mpi_ec_mul (tlta1[j], GCRYMPI_CONST_TWO, tmpa, ec_ctx);
gcry_mpi_ec_mul (tltb1[j], GCRYMPI_CONST_TWO, tmpb, ec_ctx);
/* I */
smc_sum (tmpa, &ad->alpha[0][j], ad->n, ad->k);
smc_sum (tmpb, &ad->beta[0][j], ad->n, ad->k);
/* 2L - 2I + I = 2L - I */
gcry_mpi_ec_add (tlta1[j], tlta1[j], tmpa, ec_ctx);
gcry_mpi_ec_add (tltb1[j], tltb1[j], tmpb, ec_ctx);
}
brandt_assert (!ec_point_cmp (tmpa, tlta1[ad->k - 1]));
brandt_assert (!ec_point_cmp (tmpb, tltb1[ad->k - 1]));
/* compute subtrahend: (2M+1)G */
gcry_mpi_set_ui (factor, ad->m);
gcry_mpi_lshift (factor, factor, 1);
gcry_mpi_add_ui (factor, factor, 1);
gcry_mpi_ec_mul (subtr, factor, ec_gen, ec_ctx);
/* compute gamma and delta for price determination */
for (uint16_t j = 0; j < ad->k; j++)
{
/* compute inner gamma */
gcry_mpi_ec_sub (tmpa, tlta1[j], subtr, ec_ctx);
/* inner delta */
ec_point_copy (tmpb, tltb1[j]);
/* copy unmasked outcome to all other bidder layers so they don't
* have to be recomputed to check the ZK proof_2dle's from other
* bidders when receiving their outcome messages */
for (uint16_t a = 0; a < ad->n; a++)
{
ec_point_copy (ad->gamma3[a][0][j], tmpa);
ec_point_copy (ad->delta3[a][0][j], tmpb);
}
}
/* gamma and delta for winner determination: compute
* @f$\sum_{h=1}^n\sum_{d=j+1}^k2^{h-1}b_h@f and store it in every bidders gamma and
* delta, since it is needed each time a gamma,delta pair is received from
* another bidder. */
for (uint16_t i = 0; i < ad->n; i++)
{
for (uint16_t j = 0; j < ad->k; j++)
{
/* initialize with zeroes, since we are calculating a sum */
ec_point_copy (ad->gamma3[i][1][j], ec_zero);
ec_point_copy (ad->delta3[i][1][j], ec_zero);
}
}
gcry_mpi_set_ui (factor, 1);
for (uint16_t h = 0; h < ad->n; h++)
{
for (uint16_t j = 0; j < ad->k; j++)
{
for (uint16_t d = j + 1; d < ad->k; d++)
{
gcry_mpi_ec_mul (tmpa, factor, ad->alpha[h][d], ec_ctx);
gcry_mpi_ec_add (ad->gamma3[0][1][j],
ad->gamma3[0][1][j],
tmpa,
ec_ctx);
gcry_mpi_ec_mul (tmpb, factor, ad->beta[h][d], ec_ctx);
gcry_mpi_ec_add (ad->delta3[0][1][j],
ad->delta3[0][1][j],
tmpb,
ec_ctx);
}
}
gcry_mpi_lshift (factor, factor, 1);
}
/* copy component to all bidders so they don't have to be recomputed */
for (uint16_t a = 1; a < ad->n; a++)
{
for (uint16_t j = 0; j < ad->k; j++)
{
ec_point_copy (ad->gamma3[a][1][j], ad->gamma3[0][1][j]);
ec_point_copy (ad->delta3[a][1][j], ad->delta3[0][1][j]);
}
}
gcry_mpi_release (factor);
gcry_mpi_point_release (subtr);
gcry_mpi_point_release (tmpa);
gcry_mpi_point_release (tmpb);
smc_free1 (tlta1, ad->k);
smc_free1 (tltb1, ad->k);
smc_free2 (tlta2, ad->n, ad->k);
smc_free2 (tltb2, ad->n, ad->k);
smc_free2 (tlta3, ad->n, ad->k);
smc_free2 (tltb3, ad->n, ad->k);
}
/**
* mp_pub_compute_outcome computes encrypted outcome shares and packs them into
* a message buffer together with proofs of correctnes.
*
* @param[in] ad Pointer to the BRANDT_Auction struct to operate on
2016-12-02 12:18:35 +01:00
* @param[out] buflen Size of the returned message buffer in byte
* @return A buffer containing the encrypted outcome vectors
* which needs to be broadcast
*/
unsigned char *
mp_pub_compute_outcome (struct BRANDT_Auction *ad, size_t *buflen)
{
unsigned char *ret;
unsigned char *cur;
struct msg_head *head;
gcry_mpi_point_t tmpa = gcry_mpi_point_new (0);
gcry_mpi_point_t tmpb = gcry_mpi_point_new (0);
struct ec_mpi *gamma;
struct ec_mpi *delta;
struct proof_2dle *proof2;
brandt_assert (ad && buflen);
*buflen = (sizeof (*head) + /* msg header */
ad->k * /* k * (gamma, delta, proof2) */
(sizeof (*gamma) + sizeof (*delta) + sizeof (*proof2)));
ret = GNUNET_new_array (*buflen, unsigned char);
head = (struct msg_head *)ret;
head->prot_version = htonl (0);
head->msg_type = htonl (msg_outcome);
cur = ret + sizeof (*head);
for (uint16_t j = 0; j < ad->k; j++)
{
gamma = (struct ec_mpi *)cur;
delta = &((struct ec_mpi *)cur)[1];
proof2 = (struct proof_2dle *)(cur + 2 * sizeof (struct ec_mpi));
/* only send the price determination gamma,delta pair, since the winner
* determination pair can and will be computed by the receiver */
ec_point_copy (tmpa, ad->gamma3[ad->i][0][j]);
ec_point_copy (tmpb, ad->delta3[ad->i][0][j]);
/* apply random masking for losing bidders */
smc_zkp_2dle (ad->gamma3[ad->i][0][j],
ad->delta3[ad->i][0][j],
tmpa,
tmpb,
NULL,
proof2);
ec_point_serialize (gamma, ad->gamma3[ad->i][0][j]);
ec_point_serialize (delta, ad->delta3[ad->i][0][j]);
/* compute own winner determination gamma,delta pair */
gcry_mpi_ec_add (ad->gamma3[ad->i][1][j],
ad->gamma3[ad->i][0][j],
ad->gamma3[ad->i][1][j],
ec_ctx);
gcry_mpi_ec_add (ad->delta3[ad->i][1][j],
ad->delta3[ad->i][0][j],
ad->delta3[ad->i][1][j],
ec_ctx);
cur += sizeof (*gamma) + sizeof (*delta) + sizeof (*proof2);
}
gcry_mpi_point_release (tmpa);
gcry_mpi_point_release (tmpb);
return ret;
}
int
mp_pub_recv_outcome (struct BRANDT_Auction *ad,
const unsigned char *buf,
size_t buflen,
uint16_t sender)
{
int ret = 0;
const unsigned char *cur = buf;
struct proof_2dle *proof2;
gcry_mpi_point_t gamma = gcry_mpi_point_new (0);
gcry_mpi_point_t delta = gcry_mpi_point_new (0);
brandt_assert (ad && buf);
if (buflen != (ad->k * (2 * sizeof (struct ec_mpi) + sizeof (*proof2))))
{
2016-12-02 09:34:25 +01:00
GNUNET_log_from (GNUNET_ERROR_TYPE_ERROR,
"libbrandt",
"wrong size of received outcome\n");
goto quit;
}
for (uint16_t j = 0; j < ad->k; j++)
{
ec_point_parse (gamma, (struct ec_mpi *)cur);
ec_point_parse (delta, &((struct ec_mpi *)cur)[1]);
proof2 = (struct proof_2dle *)(cur + 2 * sizeof (struct ec_mpi));
if (smc_zkp_2dle_check (gamma,
delta,
ad->gamma3[sender][0][j],
ad->delta3[sender][0][j],
proof2))
{
2016-12-02 09:34:25 +01:00
GNUNET_log_from (GNUNET_ERROR_TYPE_ERROR,
"libbrandt",
"wrong zkp2 for gamma, delta received\n");
goto quit;
}
ec_point_copy (ad->gamma3[sender][0][j], gamma);
ec_point_copy (ad->delta3[sender][0][j], delta);
/* compute winner determination gamma,delta pair */
gcry_mpi_ec_add (ad->gamma3[sender][1][j],
ad->gamma3[sender][0][j],
ad->gamma3[sender][1][j],
ec_ctx);
gcry_mpi_ec_add (ad->delta3[sender][1][j],
ad->delta3[sender][0][j],
ad->delta3[sender][1][j],
ec_ctx);
cur += 2 * sizeof (struct ec_mpi) + sizeof (*proof2);
}
ret = 1;
quit:
gcry_mpi_point_release (gamma);
gcry_mpi_point_release (delta);
return ret;
}
void
mp_pub_prep_decryption (struct BRANDT_Auction *ad)
{
gcry_mpi_point_t tmp_price = gcry_mpi_point_new (0);
gcry_mpi_point_t tmp_winner = gcry_mpi_point_new (0);
ad->phi3 = smc_init3 (ad->n, 2, ad->k);
brandt_assert (ad->phi3);
for (uint16_t j = 0; j < ad->k; j++)
{
smc_sum (tmp_price, &ad->delta3[0][0][j], ad->n, 2 * ad->k);
smc_sum (tmp_winner, &ad->delta3[0][1][j], ad->n, 2 * ad->k);
/* copy still encrypted outcome to all other bidder layers so they
* don't have to be recomputed to check the ZK proof_2dle's from
* other bidders when receiving their outcome decryption messages */
for (uint16_t a = 0; a < ad->n; a++)
{
ec_point_copy (ad->phi3[a][0][j], tmp_price);
ec_point_copy (ad->phi3[a][1][j], tmp_winner);
}
}
gcry_mpi_point_release (tmp_price);
gcry_mpi_point_release (tmp_winner);
}
/**
* mp_pub_decrypt_outcome decrypts part of the outcome and packs it into a
* message buffer together with proofs of correctnes.
*
* @param[in] ad Pointer to the BRANDT_Auction struct to operate on
2016-12-02 12:18:35 +01:00
* @param[out] buflen Size of the returned message buffer in byte
* @return A buffer containing the own share of the decrypted outcome
* which needs to be broadcast
*/
unsigned char *
mp_pub_decrypt_outcome (struct BRANDT_Auction *ad, size_t *buflen)
{
unsigned char *ret;
unsigned char *cur;
gcry_mpi_point_t tmp = gcry_mpi_point_new (0);
struct msg_head *head;
struct ec_mpi *phi;
struct proof_2dle *proof2;
brandt_assert (ad && buflen);
*buflen = (sizeof (*head) + 2 * ad->k * (sizeof (*phi) + sizeof (*proof2)));
ret = GNUNET_new_array (*buflen, unsigned char);
head = (struct msg_head *)ret;
head->prot_version = htonl (0);
head->msg_type = htonl (msg_decrypt);
cur = ret + sizeof (*head);
/* decrypt price and winner components */
for (uint16_t comp = 0; comp < 2; comp++)
{
for (uint16_t j = 0; j < ad->k; j++)
{
phi = (struct ec_mpi *)cur;
proof2 = (struct proof_2dle *)(cur + sizeof (*phi));
ec_point_copy (tmp, ad->phi3[ad->i][comp][j]);
/* decrypt outcome component and prove the correct key was used */
smc_zkp_2dle (ad->phi3[ad->i][comp][j],
NULL,
tmp,
ec_gen,
ad->x,
proof2);
ec_point_serialize (phi, ad->phi3[ad->i][comp][j]);
cur += sizeof (*phi) + sizeof (*proof2);
}
}
gcry_mpi_point_release (tmp);
return ret;
}
int
mp_pub_recv_decryption (struct BRANDT_Auction *ad,
const unsigned char *buf,
size_t buflen,
uint16_t sender)
{
int ret = 0;
const unsigned char *cur = buf;
struct proof_2dle *proof2;
gcry_mpi_point_t phi = gcry_mpi_point_new (0);
brandt_assert (ad && buf);
if (buflen != (2 * ad->k * (sizeof (struct ec_mpi) + sizeof (*proof2))))
{
2016-12-02 09:34:25 +01:00
GNUNET_log_from (GNUNET_ERROR_TYPE_WARNING,
"libbrandt",
"wrong size of received outcome decryption\n");
goto quit;
}
/* handle received price and winner components */
for (uint16_t comp = 0; comp < 2; comp++)
{
for (uint16_t j = 0; j < ad->k; j++)
{
ec_point_parse (phi, (struct ec_mpi *)cur);
proof2 = (struct proof_2dle *)(cur + sizeof (struct ec_mpi));
if (smc_zkp_2dle_check (phi,
ad->y[sender],
ad->phi3[sender][comp][j],
ec_gen,
proof2))
{
2016-12-02 09:34:25 +01:00
GNUNET_log_from (GNUNET_ERROR_TYPE_WARNING,
"libbrandt",
"wrong zkp2 for phi, y received\n");
goto quit;
}
ec_point_copy (ad->phi3[sender][comp][j], phi);
cur += sizeof (struct ec_mpi) + sizeof (*proof2);
}
}
ret = 1;
quit:
gcry_mpi_point_release (phi);
return ret;
}
struct BRANDT_Result *
mp_pub_determine_outcome (struct BRANDT_Auction *ad,
uint16_t *len)
{
struct BRANDT_Result *ret;
int32_t price = -1;
uint16_t cur_winner = 0;
int dlogi = -1;
gcry_mpi_point_t sum_gamma = gcry_mpi_point_new (0);
gcry_mpi_point_t sum_phi = gcry_mpi_point_new (0);
brandt_assert (ad);
for (uint16_t j = ad->k - 1; j >= 0; j--)
{
smc_sum (sum_gamma, &ad->gamma3[0][0][j], ad->n, 2 * ad->k);
smc_sum (sum_phi, &ad->phi3[0][0][j], ad->n, 2 * ad->k);
gcry_mpi_ec_sub (sum_gamma, sum_gamma, sum_phi, ec_ctx);
/* first zero component determines the price */
if (!ec_point_cmp (sum_gamma, ec_zero))
{
price = j;
break;
}
}
if (-1 == price)
return NULL;
/* extract winners point for the winning price */
smc_sum (sum_gamma, &ad->gamma3[0][1][price], ad->n, 2 * ad->k);
smc_sum (sum_phi, &ad->phi3[0][1][price], ad->n, 2 * ad->k);
gcry_mpi_ec_sub (sum_gamma, sum_gamma, sum_phi, ec_ctx);
dlogi = GNUNET_CRYPTO_ecc_dlog (ad->dlogctx, sum_gamma);
brandt_assert (dlogi > 0);
/* all bidders participated with a multiplicative share */
dlogi /= ad->n;
price = price / ad->n;
ret = GNUNET_new_array (ad->m, struct BRANDT_Result);
/* can only support up to bits(dlogi) bidders */
brandt_assert (sizeof (int) * 8 > ad->n);
for (uint16_t i = 0; i < ad->n; i++)
{
/* a set bit determines a winner */
if (dlogi & (1 << i))
{
if (cur_winner >= ad->m)
{
2016-12-02 09:34:25 +01:00
GNUNET_log_from (GNUNET_ERROR_TYPE_ERROR,
"libbrandt",
"too many winners detected\n");
GNUNET_free (ret);
ret = NULL;
goto quit;
}
ret[cur_winner].bidder = i;
ret[cur_winner].price = price;
ret[cur_winner].status = BRANDT_bidder_won;
cur_winner++;
}
}
if (cur_winner != ad->m)
{
2016-12-02 09:34:25 +01:00
GNUNET_log_from (GNUNET_ERROR_TYPE_ERROR,
"libbrandt",
"too few winners detected\n");
GNUNET_free (ret);
ret = NULL;
goto quit;
}
if (len)
*len = ad->m;
quit:
gcry_mpi_point_release (sum_gamma);
gcry_mpi_point_release (sum_phi);
return ret;
}