libbrandt/fp_pub.c

461 lines
13 KiB
C
Raw Normal View History

/* This file is part of libbrandt.
* Copyright (C) 2016 GNUnet e.V.
*
* libbrandt is free software: you can redistribute it and/or modify it under
* the terms of the GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option) any later
* version.
*
* libbrandt is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along with
* libbrandt. If not, see <http://www.gnu.org/licenses/>.
*/
/**
* @file fp_pub.c
* @brief Implementation of the first price public outcome algorithm.
* @author Markus Teich
*/
#include "platform.h"
#include <gcrypt.h>
#include "crypto.h"
#include "internals.h"
#include "util.h"
void
fp_pub_prep_outcome (struct BRANDT_Auction *ad)
{
gcry_mpi_t coeff = gcry_mpi_copy (GCRYMPI_CONST_ONE);
gcry_mpi_point_t tmp = gcry_mpi_point_new (0);
gcry_mpi_point_t *tlta1;
gcry_mpi_point_t *tltb1;
gcry_mpi_point_t **tlta2;
gcry_mpi_point_t **tltb2;
ad->gamma2 = smc_init2 (ad->n, ad->k);
brandt_assert (ad->gamma2);
ad->delta2 = smc_init2 (ad->n, ad->k);
brandt_assert (ad->delta2);
ad->tmpa1 = smc_init1 (ad->k);
brandt_assert (ad->tmpa1);
ad->tmpb1 = smc_init1 (ad->k);
brandt_assert (ad->tmpb1);
/* create temporary lookup tables with partial sums */
tlta1 = smc_init1 (ad->k);
tltb1 = smc_init1 (ad->k);
tlta2 = smc_init2 (ad->n, ad->k);
tltb2 = smc_init2 (ad->n, ad->k);
/* temporary lookup table for sum of bid vectors */
for (uint16_t i = 0; i < ad->n; i++)
{
smc_sums_partial (tlta2[i], ad->alpha[i], ad->k, 1, 1);
smc_sums_partial (tltb2[i], ad->beta[i], ad->k, 1, 1);
for (uint16_t j = 0; j < ad->k; j++)
{
gcry_mpi_ec_sub (tlta2[i][j],
tlta2[i][ad->k - 1],
tlta2[i][j],
ec_ctx);
gcry_mpi_ec_sub (tltb2[i][j],
tltb2[i][ad->k - 1],
tltb2[i][j],
ec_ctx);
}
brandt_assert (! ec_point_cmp (ec_zero, tlta2[i][ad->k - 1]));
brandt_assert (! ec_point_cmp (ec_zero, tltb2[i][ad->k - 1]));
}
for (uint16_t j = 0; j < ad->k; j++)
{
smc_sum (tlta1[j], &tlta2[0][j], ad->n, ad->k);
smc_sum (tltb1[j], &tltb2[0][j], ad->n, ad->k);
}
smc_free2 (tlta2, ad->n, ad->k);
smc_free2 (tltb2, ad->n, ad->k);
brandt_assert (! ec_point_cmp (ec_zero, tlta1[ad->k - 1]));
brandt_assert (! ec_point_cmp (ec_zero, tltb1[ad->k - 1]));
/* initialize tmp array with zeroes, since we are calculating a sum */
for (uint16_t j = 0; j < ad->k; j++)
{
ec_point_copy (ad->tmpa1[j], ec_zero);
ec_point_copy (ad->tmpb1[j], ec_zero);
}
/* store the \sum_{i=1}^n2^{i-1}b_i in tmp1 until outcome determination,
* since it is needed each time a gamma,delta pair is received from another
* bidder */
for (uint16_t i = 0; i < ad->n; i++)
{
for (uint16_t j = 0; j < ad->k; j++)
{
gcry_mpi_ec_mul (tmp, coeff, ad->alpha[i][j], ec_ctx);
gcry_mpi_ec_add (ad->tmpa1[j], ad->tmpa1[j], tmp, ec_ctx);
gcry_mpi_ec_mul (tmp, coeff, ad->beta[i][j], ec_ctx);
gcry_mpi_ec_add (ad->tmpb1[j], ad->tmpb1[j], tmp, ec_ctx);
}
gcry_mpi_lshift (coeff, coeff, 1);
}
for (uint16_t j = 0; j < ad->k; j++)
{
/* copy unmasked outcome to all other bidder layers so they don't
* have to be recomputed to check the ZK proof_2dle's from other
* bidders when receiving their outcome messages */
for (uint16_t a = 0; a < ad->n; a++)
{
ec_point_copy (ad->gamma2[a][j], tlta1[j]);
ec_point_copy (ad->delta2[a][j], tltb1[j]);
}
}
gcry_mpi_release (coeff);
gcry_mpi_point_release (tmp);
smc_free1 (tlta1, ad->k);
smc_free1 (tltb1, ad->k);
}
/**
* fp_pub_compute_outcome computes the outcome for first price auctions with a
* public outcome and packs it into a message buffer together with proofs of
* correctnes.
*
* @param[in] ad Pointer to the BRANDT_Auction struct to operate on
2016-12-02 12:18:35 +01:00
* @param[out] buflen Size of the returned message buffer in byte
* @return A buffer containing the encrypted outcome vectors
* which needs to be broadcast
*/
unsigned char *
fp_pub_compute_outcome (struct BRANDT_Auction *ad, size_t *buflen)
{
unsigned char *ret;
unsigned char *cur;
gcry_mpi_point_t tmpa = gcry_mpi_point_new (0);
gcry_mpi_point_t tmpb = gcry_mpi_point_new (0);
struct msg_head *head;
struct ec_mpi *gamma;
struct ec_mpi *delta;
struct proof_2dle *proof2;
brandt_assert (ad && buflen);
*buflen = (sizeof (*head)
+ ad->k * (sizeof (*gamma)
+ sizeof (*delta)
+ sizeof (*proof2)));
ret = GNUNET_new_array (*buflen, unsigned char);
head = (struct msg_head *) ret;
head->prot_version = htonl (0);
head->msg_type = htonl (msg_outcome);
cur = ret + sizeof (*head);
for (uint16_t j = 0; j < ad->k; j++)
{
gamma = (struct ec_mpi *) cur;
delta = &((struct ec_mpi *) cur)[1];
proof2 = (struct proof_2dle *) (cur + 2 * sizeof (struct ec_mpi));
ec_point_copy (tmpa, ad->gamma2[ad->i][j]);
ec_point_copy (tmpb, ad->delta2[ad->i][j]);
/* apply random masking to first summand */
smc_zkp_2dle (ad->gamma2[ad->i][j],
ad->delta2[ad->i][j],
tmpa,
tmpb,
NULL,
proof2);
ec_point_serialize (gamma, ad->gamma2[ad->i][j]);
ec_point_serialize (delta, ad->delta2[ad->i][j]);
/* add winner determination for own gamma,delta */
gcry_mpi_ec_add (ad->gamma2[ad->i][j],
ad->gamma2[ad->i][j],
ad->tmpa1[j],
ec_ctx);
gcry_mpi_ec_add (ad->delta2[ad->i][j],
ad->delta2[ad->i][j],
ad->tmpb1[j],
ec_ctx);
cur += sizeof (*gamma) + sizeof (*delta) + sizeof (*proof2);
}
gcry_mpi_point_release (tmpa);
gcry_mpi_point_release (tmpb);
return ret;
}
int
fp_pub_recv_outcome (struct BRANDT_Auction *ad,
const unsigned char *buf,
size_t buflen,
uint16_t sender)
{
int ret = 0;
const unsigned char *cur = buf;
struct proof_2dle *proof2;
gcry_mpi_point_t gamma = gcry_mpi_point_new (0);
gcry_mpi_point_t delta = gcry_mpi_point_new (0);
brandt_assert (ad && buf);
if (buflen != (ad->k * (2 * sizeof (struct ec_mpi) + sizeof (*proof2))))
{
GNUNET_log_from (GNUNET_ERROR_TYPE_WARNING,
"libbrandt",
"wrong size of received outcome\n");
goto quit;
}
for (uint16_t j = 0; j < ad->k; j++)
{
ec_point_parse (gamma, (struct ec_mpi *) cur);
ec_point_parse (delta, &((struct ec_mpi *) cur)[1]);
proof2 = (struct proof_2dle *) (cur + 2 * sizeof (struct ec_mpi));
if (smc_zkp_2dle_check (gamma,
delta,
ad->gamma2[sender][j],
ad->delta2[sender][j],
proof2))
{
GNUNET_log_from (GNUNET_ERROR_TYPE_WARNING,
"libbrandt",
"wrong zkp2 for gamma, delta received\n");
goto quit;
}
ec_point_copy (ad->gamma2[sender][j], gamma);
ec_point_copy (ad->delta2[sender][j], delta);
/* add winner determination summand */
gcry_mpi_ec_add (ad->gamma2[sender][j],
ad->gamma2[sender][j],
ad->tmpa1[j],
ec_ctx);
gcry_mpi_ec_add (ad->delta2[sender][j],
ad->delta2[sender][j],
ad->tmpb1[j],
ec_ctx);
cur += 2 * sizeof (struct ec_mpi) + sizeof (*proof2);
}
ret = 1;
quit:
gcry_mpi_point_release (gamma);
gcry_mpi_point_release (delta);
return ret;
}
void
fp_pub_prep_decryption (struct BRANDT_Auction *ad)
{
gcry_mpi_point_t tmp = gcry_mpi_point_new (0);
ad->phi2 = smc_init2 (ad->n, ad->k);
brandt_assert (ad->phi2);
for (uint16_t j = 0; j < ad->k; j++)
{
smc_sum (tmp, &ad->delta2[0][j], ad->n, ad->k);
/* copy still encrypted outcome to all other bidder layers so they
* don't have to be recomputed to check the ZK proof_2dle's from
* other bidders when receiving their outcome decryption messages */
for (uint16_t a = 0; a < ad->n; a++)
ec_point_copy (ad->phi2[a][j], tmp);
}
gcry_mpi_point_release (tmp);
}
/**
* fp_pub_decrypt_outcome decrypts part of the outcome and packs it into a
* message buffer together with proofs of correctnes.
*
* @param[in] ad Pointer to the BRANDT_Auction struct to operate on
2016-12-02 12:18:35 +01:00
* @param[out] buflen Size of the returned message buffer in byte
* @return A buffer containing the own share of the decrypted outcome
* which needs to be broadcast
*/
unsigned char *
fp_pub_decrypt_outcome (struct BRANDT_Auction *ad, size_t *buflen)
{
unsigned char *ret;
unsigned char *cur;
gcry_mpi_point_t tmp = gcry_mpi_point_new (0);
struct msg_head *head;
struct ec_mpi *phi;
struct proof_2dle *proof2;
brandt_assert (ad && buflen);
*buflen = (sizeof (*head) + ad->k * (sizeof (*phi) + sizeof (*proof2)));
ret = GNUNET_new_array (*buflen, unsigned char);
head = (struct msg_head *) ret;
head->prot_version = htonl (0);
head->msg_type = htonl (msg_decrypt);
cur = ret + sizeof (*head);
for (uint16_t j = 0; j < ad->k; j++)
{
phi = (struct ec_mpi *) cur;
proof2 = (struct proof_2dle *) (cur + sizeof (*phi));
ec_point_copy (tmp, ad->phi2[ad->i][j]);
/* decrypt outcome component and prove the correct key was used */
smc_zkp_2dle (ad->phi2[ad->i][j],
NULL,
tmp,
ec_gen,
ad->x,
proof2);
ec_point_serialize (phi, ad->phi2[ad->i][j]);
cur += sizeof (*phi) + sizeof (*proof2);
}
gcry_mpi_point_release (tmp);
return ret;
}
int
fp_pub_recv_decryption (struct BRANDT_Auction *ad,
const unsigned char *buf,
size_t buflen,
uint16_t sender)
{
int ret = 0;
const unsigned char *cur = buf;
struct proof_2dle *proof2;
gcry_mpi_point_t phi = gcry_mpi_point_new (0);
brandt_assert (ad && buf);
if (buflen != (ad->k * (sizeof (struct ec_mpi) + sizeof (*proof2))))
{
GNUNET_log_from (GNUNET_ERROR_TYPE_WARNING,
"libbrandt",
"wrong size of received outcome decryption\n");
goto quit;
}
for (uint16_t j = 0; j < ad->k; j++)
{
ec_point_parse (phi, (struct ec_mpi *) cur);
proof2 = (struct proof_2dle *) (cur + sizeof (struct ec_mpi));
if (smc_zkp_2dle_check (phi,
ad->y[sender],
ad->phi2[sender][j],
ec_gen,
proof2))
{
GNUNET_log_from (GNUNET_ERROR_TYPE_WARNING,
"libbrandt",
"wrong zkp2 for phi, y received\n");
goto quit;
}
ec_point_copy (ad->phi2[sender][j], phi);
cur += sizeof (struct ec_mpi) + sizeof (*proof2);
}
ret = 1;
quit:
gcry_mpi_point_release (phi);
return ret;
}
struct BRANDT_Result *
fp_pub_determine_outcome (struct BRANDT_Auction *ad,
uint16_t *len)
{
struct BRANDT_Result *ret;
int32_t price = -1;
int32_t winner = -1;
int dlogi = -1;
gcry_mpi_point_t sum_gamma = gcry_mpi_point_new (0);
gcry_mpi_point_t sum_phi = gcry_mpi_point_new (0);
brandt_assert (ad);
for (uint16_t j = ad->k - 1; j >= 0; j--)
{
smc_sum (sum_gamma, &ad->gamma2[0][j], ad->n, ad->k);
smc_sum (sum_phi, &ad->phi2[0][j], ad->n, ad->k);
gcry_mpi_ec_sub (sum_gamma, sum_gamma, sum_phi, ec_ctx);
/* first non-zero component determines the price */
if (ec_point_cmp (sum_gamma, ec_zero))
{
price = j;
break;
}
}
{
struct GNUNET_CRYPTO_EccPoint ec_point = {0};
gcry_mpi_t q_y;
GNUNET_assert (0 == gcry_mpi_ec_set_point ("q", sum_gamma, ec_ctx));
q_y = gcry_mpi_ec_get_mpi ("q@eddsa", ec_ctx, 0);
GNUNET_assert (q_y);
GNUNET_CRYPTO_mpi_print_unsigned (ec_point.v,
sizeof(ec_point.v),
q_y);
dlogi = GNUNET_CRYPTO_ecc_dlog (ad->dlogctx,
&ec_point);
gcry_mpi_release (q_y);
}
brandt_assert (dlogi > 0);
/* all bidders participated with a multiplicative share */
dlogi /= ad->n;
/* can only support up to bits(dlogi) bidders */
brandt_assert (sizeof (int) * 8 > ad->n);
for (uint16_t i = 0; i < ad->n; i++)
{
/* first set bit determines the winner */
if (dlogi & (1 << i))
{
winner = i;
break;
}
}
gcry_mpi_point_release (sum_gamma);
gcry_mpi_point_release (sum_phi);
if (-1 == winner || -1 == price)
return NULL;
ret = GNUNET_new (struct BRANDT_Result);
ret->bidder = winner;
ret->price = price;
ret->status = BRANDT_bidder_won;
if (len)
*len = 1;
return ret;
}