package nizk import ( . "kesim.org/seal/common" ) // Represents the proof of a statement of the following form: // // ( Z=g^(x*y) && X=g^x && Y=g^y && Z_=g^(x_*y_) && X_=g^x_ && Y_=g^y_ ) // case "none" // // || ( Z=g^(x*y) && X=g^x && Y=g^y && Z_=g^(x_*r_) && X_=g^x_ && R_=g^r_ && C=g^(a*b) && A=g^a && B=g^b ) // case "unset" // || ( Z=g^(x*r) && X=g^x && R=g^r && Z_=g^(x_*r_) && X_=g^x_ && R_=g^r_ && C=g^(a*b+1) && A=g^a && B=g^b ) // case "set" // // for given A, B, C, R, X, Y, Z, R_, X_, Y_, Z_ on the curve type Stage2Proof struct { Ch [3]*Scalar R1 [3]*Scalar R2 [3]*Scalar R3 [2]*Scalar } func (b *Bit) RevealStage2(lost bool, prev *Bit, Xs ...*Point) (rv2 *StageReveal, pr *Stage2Proof) { if b.Stage == nil { b.StageCommit() } s := b.Stage var ( ε1, ε1_ [3]Bytes ε2, ε2_ [3]Bytes ε3, ε3_ [2]Bytes ρ1, ρ2 [3]*Scalar ρ3 [2]*Scalar ω [2]*Scalar ) for _, s := range [][]*Scalar{ρ1[:], ρ2[:], ρ3[:], ω[:]} { for i := range s { s[i] = Curve.RandomScalar() } } c1 := prev.StageCommitment c2 := s.StageCommitment rv1 := prev.StageReveal rv2 = b.reveal(prev.IsSet(), Xs...) if lost { ε1[0] = G.Exp(ρ1[0]).Mul(c2.X.Exp(ω[0])) ε1[1] = G.Exp(ρ1[1]).Mul(c1.X.Exp(ω[0])) ε1[2] = G.Exp(ρ1[2]).Mul(b.A.Exp(ω[0])) ε1_[0] = c2.R.Exp(ρ1[0]).Mul(rv2.Z.Exp(ω[0])) ε1_[1] = c1.R.Exp(ρ1[1]).Mul(rv1.Z.Exp(ω[0])) ε1_[2] = b.B.Exp(ρ1[2]).Mul(b.C.Div(G).Exp(ω[0])) ε2[0] = G.Exp(ρ2[0]).Mul(c2.X.Exp(ω[1])) ε2[1] = G.Exp(ρ2[1]).Mul(c1.X.Exp(ω[1])) ε2[2] = G.Exp(ρ2[2]).Mul(b.A.Exp(ω[1])) ε2_[0] = rv2.Y.Exp(ρ2[0]).Mul(rv2.Z.Exp(ω[1])) ε2_[1] = c1.R.Exp(ρ2[1]).Mul(rv1.Z.Exp(ω[1])) ε2_[2] = b.B.Exp(ρ2[2]).Mul(b.C.Exp(ω[1])) ε3[0] = G.Exp(ρ3[0]) ε3[1] = G.Exp(ρ3[1]) ε3_[0] = rv2.Y.Exp(ρ3[0]) ε3_[1] = rv1.Y.Exp(ρ3[1]) } else { if b.IsSet() { ε1[0] = G.Exp(ρ1[0]) ε1[1] = G.Exp(ρ1[1]) ε1[2] = G.Exp(ρ1[2]) ε1_[0] = c2.R.Exp(ρ1[0]) ε1_[1] = c1.R.Exp(ρ1[1]) ε1_[2] = b.B.Exp(ρ1[2]) ε2[0] = G.Exp(ρ2[0]).Mul(c2.X.Exp(ω[0])) ε2[1] = G.Exp(ρ2[1]).Mul(c1.X.Exp(ω[0])) ε2[2] = G.Exp(ρ2[2]).Mul(b.A.Exp(ω[0])) ε2_[0] = rv2.Y.Exp(ρ2[0]).Mul(rv2.Z.Exp(ω[0])) ε2_[1] = c1.R.Exp(ρ2[1]).Mul(rv1.Z.Exp(ω[0])) ε2_[2] = b.B.Exp(ρ2[2]).Mul(b.C.Exp(ω[0])) ε3[0] = G.Exp(ρ3[0]).Mul(c2.X.Exp(ω[1])) ε3[1] = G.Exp(ρ3[1]).Mul(c1.X.Exp(ω[1])) ε3_[0] = rv2.Y.Exp(ρ3[0]).Mul(rv2.Z.Exp(ω[1])) ε3_[1] = rv1.Y.Exp(ρ3[1]).Mul(rv1.Z.Exp(ω[1])) } else { ε1[0] = G.Exp(ρ1[0]).Mul(c2.X.Exp(ω[0])) ε1[1] = G.Exp(ρ1[1]).Mul(c1.X.Exp(ω[0])) ε1[2] = G.Exp(ρ1[2]).Mul(b.A.Exp(ω[0])) ε1_[0] = c2.R.Exp(ρ1[0]).Mul(rv2.Z.Exp(ω[0])) ε1_[1] = c1.R.Exp(ρ1[1]).Mul(rv1.Z.Exp(ω[0])) ε1_[2] = b.B.Exp(ρ1[2]).Mul(b.C.Div(G).Exp(ω[0])) ε2[0] = G.Exp(ρ2[0]) ε2[1] = G.Exp(ρ2[1]) ε2[2] = G.Exp(ρ2[2]) ε2_[0] = rv2.Y.Exp(ρ2[0]) ε2_[1] = c1.R.Exp(ρ2[1]) ε2_[2] = b.B.Exp(ρ2[2]) ε3[0] = G.Exp(ρ3[0]).Mul(c2.X.Exp(ω[1])) ε3[1] = G.Exp(ρ3[1]).Mul(c1.X.Exp(ω[1])) ε3_[0] = rv2.Y.Exp(ρ3[0]).Mul(rv2.Z.Exp(ω[1])) ε3_[1] = rv1.Y.Exp(ρ3[1]).Mul(rv1.Z.Exp(ω[1])) } } points := []Bytes{G, b.A, b.B, b.C, c2.R, c2.X, rv2.Y, rv2.Z, c1.R, c1.X, rv1.Y, rv1.Z} points = append(points, ε1[:]...) points = append(points, ε2[:]...) points = append(points, ε3[:]...) points = append(points, ε1_[:]...) points = append(points, ε2_[:]...) points = append(points, ε3_[:]...) ch := Challenge(points...) pr = &Stage2Proof{} if !prev.IsSet() { pr.Ch[0] = ω[0] pr.Ch[1] = ω[1] pr.Ch[2] = ch.Sub(ω[0]).Sub(ω[1]) pr.R1[0] = ρ1[0] pr.R1[1] = ρ1[1] pr.R1[2] = ρ1[2] pr.R2[0] = ρ2[0] pr.R2[1] = ρ2[1] pr.R2[2] = ρ2[2] pr.R3[0] = ρ3[0].Sub(s.x.Mul(pr.Ch[2])) pr.R3[1] = ρ3[1].Sub(prev.x.Mul(pr.Ch[2])) } else { if b.IsSet() { pr.Ch[0] = ch.Sub(ω[0]).Sub(ω[1]) pr.Ch[1] = ω[0] pr.Ch[2] = ω[1] pr.R1[0] = ρ1[0].Sub(s.x.Mul(pr.Ch[0])) pr.R1[1] = ρ1[1].Sub(prev.x.Mul(pr.Ch[0])) pr.R1[2] = ρ1[2].Sub(b.α.Mul(pr.Ch[0])) pr.R2[0] = ρ2[0] pr.R2[1] = ρ2[1] pr.R2[2] = ρ2[2] pr.R3[0] = ρ3[0] pr.R3[1] = ρ3[1] } else { pr.Ch[0] = ω[0] pr.Ch[1] = ch.Sub(ω[0]).Sub(ω[1]) pr.Ch[2] = ω[1] pr.R1[0] = ρ1[0] pr.R1[1] = ρ1[1] pr.R1[2] = ρ1[2] pr.R2[0] = ρ2[0].Sub(s.x.Mul(pr.Ch[1])) pr.R2[1] = ρ2[1].Sub(prev.x.Mul(pr.Ch[1])) pr.R2[2] = ρ2[2].Sub(b.α.Mul(pr.Ch[1])) pr.R3[0] = ρ3[0] pr.R3[1] = ρ3[1] } } return rv2, pr } func (c *Commitment) VerifyStage2(c1, c2 *StageCommitment, r1, r2 *StageReveal, p *Stage2Proof) bool { var ( e1, e1_ [3]Bytes e2, e2_ [3]Bytes e3, e3_ [2]Bytes ) e1[0] = G.Exp(p.R1[0]).Mul(c2.X.Exp(p.Ch[0])) e1[1] = G.Exp(p.R1[1]).Mul(c1.X.Exp(p.Ch[0])) e1[2] = G.Exp(p.R1[2]).Mul(c.A.Exp(p.Ch[0])) e1_[0] = c2.R.Exp(p.R1[0]).Mul(r2.Z.Exp(p.Ch[0])) e1_[1] = c1.R.Exp(p.R1[1]).Mul(r1.Z.Exp(p.Ch[0])) e1_[2] = c.B.Exp(p.R1[2]).Mul(c.C.Div(G).Exp(p.Ch[0])) e2[0] = G.Exp(p.R2[0]).Mul(c2.X.Exp(p.Ch[1])) e2[1] = G.Exp(p.R2[1]).Mul(c1.X.Exp(p.Ch[1])) e2[2] = G.Exp(p.R2[2]).Mul(c.A.Exp(p.Ch[1])) e2_[0] = r2.Y.Exp(p.R2[0]).Mul(r2.Z.Exp(p.Ch[1])) e2_[1] = c1.R.Exp(p.R2[1]).Mul(r1.Z.Exp(p.Ch[1])) e2_[2] = c.B.Exp(p.R2[2]).Mul(c.C.Exp(p.Ch[1])) e3[0] = G.Exp(p.R3[0]).Mul(c2.X.Exp(p.Ch[2])) e3[1] = G.Exp(p.R3[1]).Mul(c1.X.Exp(p.Ch[2])) e3_[0] = r2.Y.Exp(p.R3[0]).Mul(r2.Z.Exp(p.Ch[2])) e3_[1] = r1.Y.Exp(p.R3[1]).Mul(r1.Z.Exp(p.Ch[2])) points := []Bytes{G, c.A, c.B, c.C, c2.R, c2.X, r2.Y, r2.Z, c1.R, c1.X, r1.Y, r1.Z} points = append(points, e1[:]...) points = append(points, e2[:]...) points = append(points, e3[:]...) points = append(points, e1_[:]...) points = append(points, e2_[:]...) points = append(points, e3_[:]...) ch := Challenge(points...) return p.Ch[0].Add(p.Ch[1]).Add(p.Ch[2]).Equal(ch) }