package nizk import . "kesim.org/seal/common" type Stage struct { x *Scalar y *Scalar r *Scalar com *StageCommitment prf1 *Stage1Proof prf2 *Stage2Proof bit *Bit } type StageCommitment struct { R *Point X *Point Y *Point Z *Point } // Represents the proof of statements of the following form: // // [ Z=g^(xy) && X=g^x && Y=g^y && C=g^(αβ) && A=g^α && B=g^β ] // || [ Z=g^(xr) && X=g^x && R=g^r && C=g^(αβ+1) && A=g^α && B=g^β ] // // for given Z, X, Y, R, C, A and B type Stage1Proof struct { Ch [2]*Scalar Rho [2][2]*Scalar } func (b *Bit) stage(x, y, r *Scalar) *Stage { return &Stage{ x: x, y: y, r: r, bit: b, } } func (b *Bit) CommitStage1() (c *Stage, s *StageCommitment, p *Stage1Proof) { var x [3]*Scalar for i := range x { x[i] = Curve.RandomScalar() } return b.CommitStage1FromScalars(x[0], x[1], x[2]) } func (b *Bit) CommitStage1FromScalars(x, y, r *Scalar) (s *Stage, c *StageCommitment, p *Stage1Proof) { s = b.stage(x, y, r) return s, s.commit1(), s.proof1() } func (s *Stage) commit1() *StageCommitment { if s.com != nil { return s.com } var Z *Point if s.bit.IsSet() { Z = G.Exp(s.x.Mul(s.r)) } else { Z = G.Exp(s.x.Mul(s.y)) } s.com = &StageCommitment{ Z: Z, X: G.Exp(s.x), Y: G.Exp(s.y), R: G.Exp(s.r), } return s.com } func (s *Stage) proof1() *Stage1Proof { var ε [2][4]*Point var r1, r2, ρ1, ρ2, ω *Scalar for _, s := range []**Scalar{&r1, &r2, &ρ1, &ρ2, &ω} { *s = Curve.RandomScalar() } c := s.commit1() bc, _ := s.bit.Commit() if s.bit.IsSet() { ε[0][0] = G.Exp(r1).Mul(c.X.Exp(ω)) ε[0][1] = G.Exp(r2).Mul(bc.A.Exp(ω)) ε[0][2] = c.Y.Exp(r1).Mul(c.Z.Exp(ω)) ε[0][3] = bc.B.Exp(r2).Mul(bc.C.Exp(ω)) ε[1][0] = G.Exp(ρ1) ε[1][1] = G.Exp(ρ2) ε[1][2] = c.R.Exp(ρ1) ε[1][3] = bc.B.Exp(ρ2) } else { ε[0][0] = G.Exp(r1) ε[0][1] = G.Exp(r2) ε[0][2] = c.Y.Exp(r1) ε[0][3] = bc.B.Exp(r2) ε[1][0] = G.Exp(ρ1).Mul(c.X.Exp(ω)) ε[1][1] = G.Exp(ρ2).Mul(bc.A.Exp(ω)) ε[1][2] = c.R.Exp(ρ1).Mul(c.Z.Exp(ω)) ε[1][3] = bc.B.Exp(ρ2).Mul(bc.C.Div(G).Exp(ω)) } p := []Bytes{G, bc.A, bc.B, bc.C, c.R, c.X, c.Y, c.Z} for _, e := range ε[0] { p = append(p, e) } for _, e := range ε[1] { p = append(p, e) } ch := Challenge(p...) pr := &Stage1Proof{} α, _ := s.bit.Scalars() if s.bit.IsSet() { pr.Ch[0] = ω pr.Ch[1] = ch.Sub(ω) pr.Rho[0][0] = r1 pr.Rho[0][1] = r2 pr.Rho[1][0] = ρ1.Sub(s.x.Mul(pr.Ch[1])) pr.Rho[1][1] = ρ2.Sub(α.Mul(pr.Ch[1])) } else { pr.Ch[0] = ch.Sub(ω) pr.Ch[1] = ω pr.Rho[0][0] = r1.Sub(s.x.Mul(pr.Ch[0])) pr.Rho[0][1] = r2.Sub(α.Mul(pr.Ch[0])) pr.Rho[1][0] = ρ1 pr.Rho[1][1] = ρ2 } s.prf1 = pr return pr } func (c *Commitment) VerifyStage1(sc *StageCommitment, p *Stage1Proof) bool { var ε [2][4]*Point ε[0][0] = G.Exp(p.Rho[0][0]).Mul(sc.X.Exp(p.Ch[0])) ε[0][1] = G.Exp(p.Rho[0][1]).Mul(c.A.Exp(p.Ch[0])) ε[0][2] = sc.Y.Exp(p.Rho[0][0]).Mul(sc.Z.Exp(p.Ch[0])) ε[0][3] = c.B.Exp(p.Rho[0][1]).Mul(c.C.Exp(p.Ch[0])) ε[1][0] = G.Exp(p.Rho[1][0]).Mul(sc.X.Exp(p.Ch[1])) ε[1][1] = G.Exp(p.Rho[1][1]).Mul(c.A.Exp(p.Ch[1])) ε[1][2] = sc.R.Exp(p.Rho[1][0]).Mul(sc.Z.Exp(p.Ch[1])) ε[1][3] = c.B.Exp(p.Rho[1][1]).Mul(c.C.Div(G).Exp(p.Ch[1])) points := []Bytes{G, c.A, c.B, c.C, sc.R, sc.X, sc.Y, sc.Z} for _, e := range ε[0] { points = append(points, e) } for _, e := range ε[1] { points = append(points, e) } ch := Challenge(points...) return p.Ch[0].Add(p.Ch[1]).Equal(ch) }