package nizk import . "kesim.org/seal/common" // Implements the proof and verification of statements of the following form: // [ Z=g^(xy) && X=g^x && Y=g^y && C=g^(αβ) && A=g^α && B=g^β ] // || [ Z=g^(xr) && X=g^x && R=g^r && C=g^(αβ+1) && A=g^α && B=g^β ] // for given Z, X, Y, R, C, A and B type Stage1 struct { // Original Bit *Bit // New stage 1 private data x *Scalar y *Scalar r *Scalar } type Stage1Commitment struct { // Original Commitment *Commitment // New R *Point X *Point Y *Point Z *Point } func (b *Bit) Stage1() *Stage1 { var x [3]*Scalar for i := range x { x[i] = Curve.RandomScalar() } return b.Stage1FromScalars(x[0], x[1], x[2]) } func (b *Bit) Stage1FromScalars(x, y, r *Scalar) *Stage1 { return &Stage1{ x: x, y: y, r: r, Bit: b, } } func (s *Stage1) commit() *Stage1Commitment { var Z *Point φ := s.α.Mul(s.β) if s.bitSet { Z = G.Exp(s.x.Mul(s.r)) φ = φ.Add(One) } else { Z = G.Exp(s.x.Mul(s.y)) } return &Stage1Commitment{ Z: Z, X: G.Exp(s.x), Y: G.Exp(s.y), R: G.Exp(s.r), Commitment: &Commitment{ A: G.Exp(s.α), B: G.Exp(s.β), C: G.Exp(φ), }, } } type Stage1Proof struct { Ch [2]*Scalar Rho [2][2]*Scalar } func (s *Stage1) proof(c *Stage1Commitment) *Stage1Proof { var ε [2][4]*Point var r1, r2, ρ1, ρ2, ω *Scalar for _, s := range []**Scalar{&r1, &r2, &ρ1, &ρ2, &ω} { *s = Curve.RandomScalar() } if s.bitSet { ε[0][0] = G.Exp(r1).Mul(c.X.Exp(ω)) ε[0][1] = G.Exp(r2).Mul(c.A.Exp(ω)) ε[0][2] = c.Y.Exp(r1).Mul(c.Z.Exp(ω)) ε[0][3] = c.B.Exp(r2).Mul(c.C.Exp(ω)) ε[1][0] = G.Exp(ρ1) ε[1][1] = G.Exp(ρ2) ε[1][2] = c.R.Exp(ρ1) ε[1][3] = c.B.Exp(ρ2) } else { ε[0][0] = G.Exp(r1) ε[0][1] = G.Exp(r2) ε[0][2] = c.Y.Exp(r1) ε[0][3] = c.B.Exp(r2) ε[1][0] = G.Exp(ρ1).Mul(c.X.Exp(ω)) ε[1][1] = G.Exp(ρ2).Mul(c.A.Exp(ω)) ε[1][2] = c.R.Exp(ρ1).Mul(c.Z.Exp(ω)) ε[1][3] = c.B.Exp(ρ2).Mul(c.C.Div(G).Exp(ω)) } p := []Bytes{G, c.A, c.B, c.C, c.R, c.X, c.Y, c.Z} for _, e := range ε[0] { p = append(p, e) } for _, e := range ε[1] { p = append(p, e) } ch := Challenge(p...) pr := &Stage1Proof{} if s.bitSet { pr.Ch[0] = ω pr.Ch[1] = ch.Sub(ω) pr.Rho[0][0] = r1 pr.Rho[0][1] = r2 pr.Rho[1][0] = ρ1.Sub(s.x.Mul(pr.Ch[1])) pr.Rho[1][1] = ρ2.Sub(s.α.Mul(pr.Ch[1])) } else { pr.Ch[0] = ch.Sub(ω) pr.Ch[1] = ω pr.Rho[0][0] = r1.Sub(s.x.Mul(pr.Ch[0])) pr.Rho[0][1] = r2.Sub(s.α.Mul(pr.Ch[0])) pr.Rho[1][0] = ρ1 pr.Rho[1][1] = ρ2 } return pr } func (s *Stage1) Commit() (*Stage1Commitment, *Stage1Proof) { c := s.commit() return c, s.proof(c) } func (c *Stage1Commitment) Verify(p *Stage1Proof) bool { var ε [2][4]*Point ε[0][0] = G.Exp(p.Rho[0][0]).Mul(c.X.Exp(p.Ch[0])) ε[0][1] = G.Exp(p.Rho[0][1]).Mul(c.A.Exp(p.Ch[0])) ε[0][2] = c.Y.Exp(p.Rho[0][0]).Mul(c.Z.Exp(p.Ch[0])) ε[0][3] = c.B.Exp(p.Rho[0][1]).Mul(c.C.Exp(p.Ch[0])) ε[1][0] = G.Exp(p.Rho[1][0]).Mul(c.X.Exp(p.Ch[1])) ε[1][1] = G.Exp(p.Rho[1][1]).Mul(c.A.Exp(p.Ch[1])) ε[1][2] = c.R.Exp(p.Rho[1][0]).Mul(c.Z.Exp(p.Ch[1])) ε[1][3] = c.B.Exp(p.Rho[1][1]).Mul(c.C.Div(G).Exp(p.Ch[1])) points := []Bytes{G, c.A, c.B, c.C, c.R, c.X, c.Y, c.Z} for _, e := range ε[0] { points = append(points, e) } for _, e := range ε[1] { points = append(points, e) } ch := Challenge(points...) return p.Ch[0].Add(p.Ch[1]).Equal(ch) }